检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王忠宾[1] 李福涛 司垒[1] 魏东 戴嘉良 张森 WANG Zhongbin;LI Futao;SI Lei;WEI Dong;DAI Jialiang;ZHANG Sen(School of Mechanical and Electrical Engineering,China University of Mining and Technology,Xuzhou 221116,China)
机构地区:[1]中国矿业大学机电工程学院,江苏徐州221116
出 处:《煤炭科学技术》2025年第1期296-311,共16页Coal Science and Technology
基 金:国家自然科学基金资助项目(52174152);智能采矿装备技术全国重点实验室自主研究课题资助项目(ZNCK20240106);徐州市基础研究计划资助项目(KC23051)。
摘 要:自适应截割技术是实现采煤机智能化的核心技术,对提升煤矿开采效率、提高安全性和资源利用率具有重要作用。因此,开展了自适应截割技术的综述研究,重点探讨了其技术原理及应用现状。根据核心功能和技术目标,将采煤机自适应截割技术划分为记忆截割、透明地质、煤岩识别和自适应控制4个研究内容。记忆截割通过记录历史数据来优化采煤路径,透明地质利用综合探测技术获取实时地质信息,煤岩识别技术根据不同的识别原理,可以分为基于物理参数的间接法、基于视觉的直接法、以及探地雷达和超声波等基于波动特性的探测法,以实现煤岩界面或煤岩性质的精确识别,自适应控制则通过自动化调节采煤机的运行参数。这些技术从多个角度提升了采煤机的智能化水平。然而,由于煤层地质条件及恶劣开采环境的影响,现有技术在适应性和经济性方面存在一些局限性。因此,针对未来采煤机自适应截割技术的发展趋势,提出了以下建议:促进记忆截割、透明地质与煤岩识别技术的融合,以实现更高效的煤层信息获取;采用多传感器融合技术,以提高煤岩识别的准确度和可靠性;发展基于大数据分析的智能决策支持系统,优化采煤机的运行策略,同时研究多领域协同仿真控制策略,以应对技术瓶颈并增强系统性能。Adaptive cutting technology is crucial for enabling intelligent shearers,significantly improving mining efficiency,safety,and resource utilization.Therefore,a comprehensive review of adaptive cutting technology has been conducted,focusing on its technical prin-ciples and current applications.Based on core functions and technical objectives,adaptive cutting technology is categorized into four primary research areas:memory cutting,transparent geology,coal-rock identification,and adaptive control.Memory cutting enhance cut-ting paths by recording historical data,while transparent geology leverages integrated detection technologies to acquire real-time geologic-al information.Coal-rock identification techniques are classified according to recognition principles:indirect methods based on physical parameters,direct methods relying on visual information,and wave-based detection methods such as ground-penetrating radar and ultra-sound.Adaptive control automates the adjustment of shearer operating parameters.Collectively,these technologies advance the intelli-gence of coal mining machines from various perspectives.Nevertheless,due to geological complexities and challenging mining environ-ments,existing technologies face limitations in adaptability and cost-effectiveness.Therefore,future development of adaptive cutting tech-nology should focus on integrating memory cutting,transparent geology,and coal-rock identification technologies to enhance coal seam data acquisition.Implementing multi-sensor fusion technology to improve the accuracy and reliability of coal-rock identification.Develop-ing intelligent decision-support systems based on big data analytics to optimize mining operations and researching multi-domain collabor-ative simulation control strategies to address technical challenges and improve system performance.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49