检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨锁荣 杨洪朝 申富饶[1,3] 赵健 YANG Suo-Rong;YANG Hong-Chao;SHEN Fu-Rao;ZHAO Jian(State Key Laboratory for Novel Software Technology(Nanjing University),Nanjing 210023,China;Department of Computer Science and Technology,Nanjing University,Nanjing 210023,China;School of Artificial Intelligence,Nanjing University,Nanjing 210023,China;School of Electronic Science and Engineering,Nanjing University,Nanjing 210023,China)
机构地区:[1]计算机软件新技术国家重点实验室(南京大学),江苏南京210023 [2]南京大学计算机科学与技术系,江苏南京210023 [3]南京大学人工智能学院,江苏南京210023 [4]南京大学电子科学与工程学院,江苏南京210023
出 处:《软件学报》2025年第3期1390-1412,共23页Journal of Software
基 金:国家自然科学基金(62276127)。
摘 要:深度学习已经在许多计算机视觉任务中取得了显著的成果.然而,深度神经网络通常需要大量的训练数据以避免过拟合,但实际应用中标记数据可能非常有限.因此,数据增强已成为提高训练数据充分性和多样性的有效方法,也是深度学习模型成功应用于图像数据的必要环节.系统地回顾不同的图像数据增强方法,并提出一个新的分类方法,为研究图像数据增强提供了新的视角.从不同的类别出发介绍各类数据增强方法的优势和局限性,并阐述各类方法的解决思路和应用价值.此外,还介绍语义分割、图像分类和目标检测这3种典型计算机视觉任务中常用的公共数据集和性能评价指标,并在这3个任务上对数据增强方法进行实验对比分析.最后,讨论当前数据增强所面临的挑战和未来的发展趋势.Deep learning has yielded remarkable achievements in many computer vision tasks.However,deep neural networks typically require a large amount of training data to prevent overfitting.In practical applications,labeled data may be extremely limited.Thus,data augmentation has become an effective way to enhance the adequacy and diversity of training data and is also a necessary link for the successful application of deep learning models to image data.This study systematically reviews different image data augmentation methods and proposes a new classification method to provide a fresh perspective for studying image data augmentation.The advantages and limitations of various data augmentation methods are introduced from different categories,and the solution ideas and application values of these methods are elaborated.In addition,commonly used public datasets and performance evaluation indicators in three typical computer vision tasks of semantic segmentation,image classification,and object detection are presented.Experimental comparative analysis of data augmentation methods is conducted on these three tasks.Finally,the challenges and future development trends currently faced by data augmentation are discussed.
关 键 词:深度学习 图像数据增强 图像识别 泛化性能 计算机视觉
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49