检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张雪原 蔡思烨 刘巧宏 朱坚 包晓炜 夏玉剑 陈极 ZHANG Xueyuan;CAI Siye;LIU Qiaohong;ZHU Jian;BAO Xiaowei;XIA Yujian;CHEN Ji(State Grid Jiading Power Supply Company,SMEPC,Shanghai 201800,China)
机构地区:[1]国网上海市电力公司嘉定供电公司,上海201800
出 处:《电力与能源》2025年第1期61-66,共6页Power & Energy
摘 要:随着新能源在新型电力系统中渗透率的日益增加,对风电场功率预测的准确性能要求也不断提升。为提高风电功率预测的准确性和可靠性,设计了以线性回归、K邻近、随机森林算法为特征提取层,以轻量梯度提升机为回归预测层的Stacking模型融合算法。以某风电场近年运行数据为案例,验证了该基于Stacking模型融合算法的预测方法相较于任一单一机器学习算法都具有更高的预测精度。With the increasing penetration of renewable energy in the new power system,the requirements for the prediction performance of wind farm power have gradually improved.To enhance the accuracy and reliability of wind power forecasting,a Stacking model fusion algorithm is designed,with linear regression,k-nearest neighbors(KNN),and random forest algorithms as the feature extraction layer,and a lightweight gradient boosting machine as the regression prediction layer.Using operational data from a wind farm in recent years as a case study,it is verified that the prediction method based on the Stacking model fusion algorithm achieves higher accuracy com-pared to any single machine learning algorithm.
关 键 词:风力发电 Stacking模型融合算法 随机森林 K邻近 负荷预测
分 类 号:TM61[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.188.195.92