影像组学与人工智能预测直肠癌淋巴结转移的研究进展  

Application of radiomics and artificial intelligence in predicting lymph node metastasis in rectal cancer

在线阅读下载全文

作  者:王子圆 刘欣然 孙利娜 雷军强[1,2,3,4] WANG Ziyuan;LIU Xinran;SUN Lina;LEI Junqiang(The First Clinical Medical School,Lanzhou University,Lanzhou 730000,China;Department of Radiology,The First Hospital of Lanzhou University,Lanzhou 730000,China;Intelligent Imaging Medical Engineering Research Center of Gansu Province,Lanzhou 730000,China;Gansu Provincial Clinical Research Center for Radiology Imaging,Lanzhou 730000,China)

机构地区:[1]兰州大学第一临床医学院,甘肃兰州730000 [2]兰州大学第一医院放射科,甘肃兰州730000 [3]甘肃省智能影像医学工程研究中心,甘肃兰州730000 [4]甘肃省放射影像临床医学研究中心,甘肃兰州730000

出  处:《兰州大学学报(医学版)》2025年第1期88-94,共7页Journal of Lanzhou University(Medical Sciences)

基  金:甘肃省放射影像医学临床医学研究中心基金资助项目(20JR10FA668)。

摘  要:直肠癌患者的淋巴结状态对其治疗方式的选择和预后具有重要价值,术前准确、无创地预测淋巴结转移是该领域的研究难题。近年来,影像组学和人工智能由于可以从医学影像中非侵入性地获取高通量数据信息而受到关注,在术前识别淋巴结转移的效能优于普通放射科医生。本研究综述近年来基于影像组学和人工智能预测直肠癌淋巴结转移的相关研究,以期为医护人员更准确地识别高风险人群并拟定精准治疗策略提供依据。The lymph node status of rectal cancer is closely related to the choice of treatment modalities and prognosis of patients.An accurate and non-invasive prediction of lymphatic metastasis presents a significant research challenge in the field of rectal cancer.In recent years,radiomics and artificial intelligence have garnered considerable attention for their capacity to non-invasively extract high-throughput information from images,with the efficacy of preoperative identification of lymph node metastasis surpassing that of radiologists.Consequently,this paper reviewed recent research on the prediction of lymph node metastasis of rectal cancer using radiomics and artificial intelligence,aiming to provide a foundation for healthcare professionals to accurately identify high-risk groups and formulate precise treatment strategies.

关 键 词:直肠癌 淋巴结转移 影像组学 人工智能 

分 类 号:R735.3[医药卫生—肿瘤]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象