检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘莉 LIU Li(Xinjiang Railway Vocational and Technical College,Hami,Xinjiang 839000,China)
出 处:《计算机应用文摘》2025年第6期99-101,共3页
摘 要:随着电力系统的智能化发展,配电网的负荷预测与优化调度成为提升电网运行效率与经济性的关键技术之一。基于人工智能技术,文章研究了配电网负荷预测与优化调度的方法。采用机器学习和深度学习算法,对配电网负荷进行精准预测,以期实现对电力需求的精确掌握。结合优化算法,提出了一种有效的负荷调度策略,旨在减少电网运行成本、降低碳排放并提高电力系统的稳定性和运行效率。实践结果表明,人工智能技术在负荷预测的准确性、调度优化的效果及系统稳定性等方面具有显著优势。研究成果为配电网的智能化运行提供了技术支持,具有广阔的应用前景。With the intelligent development of power system,load forecasting and optimal scheduling of distribution network have become one of the key technologies to improve the efficiency and economy of power network operation.Based on artificial intelligence technology,this paper studies the method of load forecasting and optimal scheduling of distribution network.By using machine learning and deep learning algorithms,the load of distribution network is accurately predicted,in order to achieve accurate grasp of power demand.Combined with the optimization algorithm,an effective load scheduling strategy is proposed to reduce the operating cost,reduce carbon emission and improve the stability and efficiency of the power system.The practical results show that artificial intelligence technology has significant advantages in the accuracy of load forecasting,the effect of scheduling optimization and the stability of the system.The research results provide technical support for the intelligent operation of distribution network and have a wide application prospect.
分 类 号:TM715[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49