改进YOLOv5的道路车辆目标检测方法  

Improved YOLOv5 for Road Vehicle Object Detection

作  者:李康 宋文广[1] LI Kang;SONG Wenguang(School of Computer Science,Yangtze University,Jingzhou 434023,China)

机构地区:[1]长江大学计算机科学学院,湖北荆州434023

出  处:《无线电工程》2025年第3期493-499,共7页Radio Engineering

基  金:国家科技重大专项(2021DJ1006)。

摘  要:主流道路车辆目标检测算法在复杂环境下对小目标识别精度低,易因遮挡和定位不准确造成漏检、误检。提出了改进版YOLOv5算法。针对道路上的小目标,改进Head检测层结构,添加大尺度目标检测层,提高道路上小目标检测精度。为适应目标的形状和尺度变化多样,在颈部网络引入全维动态卷积(Omni-Dimensional Dynamic Convolution,ODConv),对原卷积模块进行替换,提高特征提取能力。为了充分利用全局信息,在颈部网络引入全局注意力机制(Global Attention Mechanism,GAM),提升特征提取能力。针对定位精度问题,引入MPDIoU损失函数,使预测框与真实框更加符合。实验结果表明,改进的YOLOv5算法在自动驾驶数据集KITTI上平均精度均值(mean Average Precision,mAP)达到88.7%,相较于基准模型提高了2%,每秒帧数(Frames per Second,FPS)提升了12%。改进算法的检测精度更高,检测速度更快,有效改善了复杂道路条件下的目标检测问题。The mainstream road vehicle object detection algorithms have low recognition accuracy for small targets in complex environments,and are prone to missed detections and false detections due to occlusion and inaccurate positioning.An improved version of YOLOv5 algorithm is proposed.For small targets on the road,the Head detection layer structure is improved and a large-scale target detection layer is added to improve the accuracy of small target detection on the road.To adapt to the diverse shape and scale changes of the target,Omni-Dimensional Dynamic Convolution(ODConv)is introduced into the neck network to replace the original convolution module and improve the feature extraction ability.In order to fully utilize global information,a Global Attention Mechanism(GAM)is introduced into the neck network to enhance feature extraction capabilities.To address the issue of positioning accuracy,the MPDIoU loss function is introduced to make the predicted box more consistent with the actual box.The experimental results show that the improved YOLOv5 algorithm achieves a mean Average Precision(mAP)of 88.7%on the autonomous driving dataset KITTI,an increase of 2%compared to the benchmark model,and a 12%increase in Frames per Second(FPS).The improved algorithm,with higher detection accuracy and faster detection speed,effectively improves the object detection in complex road conditions.

关 键 词:道路目标检测 YOLOv5 特征提取 MPDIoU 注意力机制 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象