基于模糊熵的单木骨架重建方法  

Fuzzy entropy based reconstruction method for single tree skeleton

在线阅读下载全文

作  者:赵永辉[1] 颜培钰 谷俊涛 李振 彭勋辉 李超[1] 刘淑玉[1] ZHAO Yonghui;YAN Peiyu;GU Juntao;LI Zhen;PENG Xunhui;LI Chao;LIU Shuyu(College of Computer and Control Engineering,Northeast Forestry University,Harbin 150040,China;Heilongjiang Cyberspace Research Centre,Harbin 150090,China)

机构地区:[1]东北林业大学计算机与控制工程学院,黑龙江哈尔滨150040 [2]黑龙江省网络空间研究中心,黑龙江哈尔滨150090

出  处:《现代电子技术》2025年第7期139-145,共7页Modern Electronics Technique

基  金:黑龙江省自然科学基金(LH2023F003);黑龙江省杰出青年项目基金(JQ2023F002)。

摘  要:在对点云数据进行采集时,由于激光雷达设备和拍摄高度等因素导致点云质量存在差异,将影响后续重建结果。针对输入点云质量不高或拓扑结构不完整的问题,文中采用一种基于骨架的方法提取树木的原始骨架,通过最短路径算法构建一个最小生成树(MST),通过模糊熵迭代方法去除冗余部分简化原始骨架。利用基于优化的拟合圆柱体序列进行重建,以近似模拟树枝的几何形状。实验结果表明,在点云数量非常有限的情况下,该方法的单木重建精度也可以达到85%左右。而在点云数量较多的情况下,重建精度可提高至90%左右,且能够处理不同形状和结构的树木,对树木主干以及具有高密度点云的矮树具有良好的重建效果。During the acquisition of point cloud data,the point cloud quality varies due to factors such as LiDAR equipment and shooting height,which will affect the results of subsequent reconstruction.In view of the poor quality or incomplete topology of the input point clouds,this paper adopts a skeleton⁃based method to extract the original skeleton of the tree,constructs a minimum spanning tree(MST)with the shortest path algorithm,and removes the redundant parts by the fuzzy entropy iterative method,so as to simplify the original skeleton.Reconstruction is carried out with an optimization⁃based sequence of fitted cylinders to approximate the geometry of simulated tree branches.The experimental results show that the accuracy of single tree reconstruction can reach about 85%even in the case of a very limited number of point clouds.In the case of a larger number of point clouds,however,its reconstruction accuracy can be increased to about 90%,and it can deal with trees of different shapes and structures,and the reconstruction results are good for tree trunks,as well as dwarf trees with high⁃density point clouds.

关 键 词:激光雷达 树木骨架 MST 模糊熵迭代 拟合圆柱体序列 重建精度 

分 类 号:TN958.98-34[电子电信—信号与信息处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象