基于DWI信号值构建局部进展期胰腺癌放化疗生存获益预测模型  

Establishment of prediction model for survival benefits of locally advanced pancreatic cancer patients after radiochemotherapy based on DWI signal value

在线阅读下载全文

作  者:张瑜 姜梦妮 Zhang Yu;Jiang Mengni(Department of Radiotherapy,Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine,Shanghai 201203,China;Department of Gastroenterology,the First Affiliated Hospital of Naval Medical University,Shanghai 200433,China;National Key Laboratory of Immunity and Inflammation,Naval Medical University,Shanghai 200433,China)

机构地区:[1]上海中医药大学附属曙光医院放疗科,201203 [2]海军军医大学第一附属医院消化内科,上海200433 [3]海军军医大学免疫与炎症国家重点实验室

出  处:《中华肝脏外科手术学电子杂志》2024年第5期657-664,共8页Chinese Journal of Hepatic Surgery(Electronic Edition)

基  金:上海中医药大学附属曙光医院四明基金(SGZXY-202202)

摘  要:目的基于治疗前磁共振弥散加权成像(DWI)信号值构建局部进展期胰腺癌(LAPC)续贯放化疗生存获益预测模型。方法回顾性分析2015年1月至2017年12月在海军军医大学第一附属医院接受立体定向放疗(SBRT)的39例LAPC患者临床影像学资料。患者均签署知情同意书。其中男26例,女13例;年龄33~80岁,中位年龄64岁。胰头癌33例,胰体尾癌6例。30例患者SBRT放疗后续贯替吉奥(S-1)化疗。SBRT放疗前均行多b值下DWI序列成像检查,成像时采用11个b值(0、25、50、75、100、150、200、400、600、800、1000 s/mm^(2)),得到11帧不同b值下的重叠DWI图像。采用Cox回归分析不同b值下的感兴趣区域(ROI)平均信号值(SI)与总体生存期(OS)之间的相关性,筛选独立风险因素,建立列线图预测模型,预测拟行续贯放化疗LAPC患者的生存获益情况。预测误差曲线(PEC)分析通过计算Brier综合分数(IBS)来评估预测误差。结果随访时间87~1095 d,中位随访时间353 d;随访期间38例死亡,1例存活。患者OS为84~1095 d,中位OS为352 d,1年生存率46%。Cox回归分析显示,SI_(100)(HR=0.997,95%CI:0.996~0.998)、SI_(600)(HR=0.996,95%CI:0.993~0.998)、SI_(800)(HR=0.994,95%CI:0.991~0.997)和S1000(HR=0.993,95%CI:0.989~0.996)是OS的独立预测因素(P<0.05)。PEC分析显示,预测模型1(SI_(100)+S-1,C-index 0.712)、模型2(SI_(600)+年龄+S-1,C-index 0.731)、模型3(SI_(800)+年龄+S-1,C-index 0.736)、模型4(SI_(1000)+年龄+S-1,C-index 0.732)均较模型内其他组合预测误差小,IBS分别为0.134、0.133、0.130和0.133,并构建相应的列线图预测模型。线性校准图显示预测效果及实际观察效应之间具有很高的一致性,进一步证实列线图预测模型的可靠性。结论基于放化疗前DWI序列信号值的列线图预测模型能够对拟进行放化疗LAPC患者的生存期获益进行预测,为临床医师制定个体化治疗决策提供依据,避免过度医疗。Objective To establish a prediction model for survival benefits of locally advanced pancreatic cancer(LAPC)patients after sequential radiochemotherapy based on the signal value of diffusion-weighted imaging(DWI)before treatment.Methods Clinical imaging data of 39 patients with LAPC who received stereotactic body radiotherapy(SBRT)in the First Affiliated Hospital of Naval Medical University from January 2015 to December 2017 were retrospectively analyzed.The informed consents of all patients were obtained and the local ethical committee approval was received.Among them,26 patients were male and 13 female,aged from 33 to 80 years,with a median age of 64 years.33 patients were diagnosed with pancreatic head cancer and 6 cases of pancreatic body and tail cancer.30 patients were treated with SBRT followed by S-1 chemotherapy.DWI sequence imaging with multiple b values was performed before SBRT.11 b values(0,25,50,75,100,150,200,400,600,800,1000 s/mm^(2))were adopted to obtain 11 overlapping DWI images with different b values.Cox regression model was used to analyze the correlation between the average signal intensity(SI)of the region of interests(ROI)and overall survival(OS)under different b values,to screen the independent risk factors,and to establish a nomogram prediction model,thereby predicting the survival benefits of patients with LAPC scheduled to undergo sequential radiochemotherapy.Prediction error curve(PEC)analysis was utilized to assess the prediction error by calculating integrated Brier score(IBS).Results The follow-up time was ranged from 87 to 1095 d,with a median of 353 d.During follow-up,38 patients died and 1 survived.The OS of all patients was ranged from 84 to 1095 d,with a median OS of 352 d,and the 1-year survival rate was 46%.Cox regression analysis showed that SI_(100)(HR=0.997,95%CI:0.996-0.998),SI_(600)(HR=0.996,95%CI:0.993-0.998),SI_(800)(HR=0.994,95%CI:0.991-0.997)and SI_(1000)(HR=0.993,95%CI:0.989-0.996)were the independent predictive factors of OS(P<0.05).PEC analysis revealed that pred

关 键 词:胰腺肿瘤 局部进展期胰腺癌(LAPC) 列线图 预后 弥散加权成像 立体定向放射治疗 模型 

分 类 号:R735.9[医药卫生—肿瘤]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象