一种基于数据驱动的空调负荷预测方法  

A data-driven method for air conditioning load forecasting

在线阅读下载全文

作  者:周孟然[1] 周光耀 胡锋 朱梓伟 张奇奇 王玲 孔伟乐 吴长臻 崔恩汉 Zhou Mengran;Zhou Guangyao;Hu Feng;Zhu Ziwei;Zhang Qiqi;Wang Ling;Kong Weile;Wu Changzhen;Cui Enhan(College of Electrical and Information Engineering,Anhui University of Science and Technology,Huainan 232001,China)

机构地区:[1]安徽理工大学电气与信息工程学院,安徽淮南232001

出  处:《河南师范大学学报(自然科学版)》2025年第3期128-134,共7页Journal of Henan Normal University(Natural Science Edition)

基  金:国家自然科学基金(52374177);安徽省自然科学基金能源互联网联合基金重点项目(2008085UD06);国网安徽省电力有限公司阜阳供电公司科技项目(SGAHFY00TKJS2310510).

摘  要:空调负荷预测是空调负荷潜力分析和电网空调负荷调控的基础,为了精确地对空调负荷进行预测,文中提出了一种考虑到外界影响因素以及集成优化的空调负荷预测方法.首先,拟定好实验运行方案并采集影响因素数据.其次,使用近邻成分分析(NCA)方法进行特征选择,剔除重要度小的特征.然后使用白鲨优化算法(white shark optimizer,WSO)对支持向量回归(support vector regression,SVR)的正则化参数和核函数的宽度参数进行优化,最后,结合自适应提升算法(adaptive boosting,Adaboost)构建Adaboost-WSO-SVR主模型,检验其精度并与其他方法进行比较.结果表明,提出的Adaboost-WSO-SVR主模型相比于集成优化后的BP,ELM模型精度更高.可知提出的方法在负荷预测方面效果更好,为空调节能优化控制策略提供依据.Air conditioning load forecasting is the basis for analyzing the potential of air conditioning load and regulating the air conditioning load of the power grid.In order to accurately predict the air conditioning load,this paper proposes an air conditioning load forecasting method taking into account of external influencing factors and integrates optimization.Firstly,develop an experimental operation plan and collect data on influencing factors.Secondly,the nearest neighbor component analysis(NCA)method is used for feature selection to remove features with low importance.Then the white shark optimizer(WSO)algorithm for support vector regression(SVR)are used.The regularization parameter of SVR and the width parameter of the kernel function are optimized,and finally,the adaptive boosting algorithm is combined.Construct the Adaboost WSO-SVR main model,test its accuracy,and compare it with other methods.The results indicate that the accuracy of the Adaboost WSO-SVR main model proposed in this article is higher than the integrated optimized BP,ELM models.It is known that the proposed method has better performance in load forecasting,providing a basis for optimizing control strategies for air conditioning energy conservation.

关 键 词:空调负荷 负荷预测 特征选择 白鲨优化算法 自适应提升算法 支持向量回归 

分 类 号:TU831[建筑科学—供热、供燃气、通风及空调工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象