融合自注意力机制和知识图谱的多任务推荐模型  

MULTI-TASK RECOMMENDATION MODEL COMBINING SELF-ATTENTION MECHANISM AND KNOWLEDGE GRAPH

在线阅读下载全文

作  者:李宇轩 郑博 吴茂念[1,2] 孙悦 朱绍军 Li Yuxuan;Zheng Bo;Wu Maonian;Sun Yue;Zhu Shaojun(School of Information Engineering,Huzhou University,Huzhou 313000,Zhejiang,China;Key Laboratory of Intelligent Management&Application Research of Modern Agricultural Resources(Huzhou University),Huzhou 313000,Zhejiang,China)

机构地区:[1]湖州师范学院信息工程学院,浙江湖州313000 [2]浙江省现代农业资源智慧管理与应用研究重点实验室(湖州师范学院),浙江湖州313000

出  处:《计算机应用与软件》2025年第3期141-148,182,共9页Computer Applications and Software

基  金:国家自然科学基金青年科学基金项目(61906066);浙江省自然科学基金项目(LQ18F020002)。

摘  要:借助知识图谱提供辅助信息以提升推荐系统性能愈加受到研究者的关注。针对基于知识图谱的推荐算法用户表示较为单一,无法充分挖掘隐藏信息的问题,提出一种融合自注意力机制和知识图谱的推荐模型KSMR。通过自注意力捕获用户交互序列的上下文信息,得到融合兴趣转移的用户向量,采用文本卷积网络实现特征修正与再提取;交替训练推荐任务和知识图谱嵌入任务,达到协同优化的目的。在真实数据集MovieLens-1M与Last.FM上的实验结果表明,模型的点击率预测(CTR)性能相较于对比算法均有明显提升。Researchers have got increasingly attention to obtain auxiliary information with the help of knowledge graph.Aimed at the problem that recommendation algorithms based on knowledge graph have single user representation and cannot fully mine hidden information,a recommendation model combining self-attention mechanism and knowledge graph(KSMR)is proposed.The context information of user interaction sequence was captured by self-attention mechanism to obtain the user vector fused with interest transfer,and the feature correction and re-extraction were realized by text CNNs.Alternating training was used to combine the knowledge graph embedding task and recommendation task to achieve the purpose of collaborative optimization.Experimental results on real datasets MovieLens-1M and Last.FM show that,the CTR(Click Through Rate)prediction performance of the model has obvious advantages over the comparison algorithms.

关 键 词:推荐系统 知识图谱 自注意力机制 兴趣转移 交替训练 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象