检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张昀 陈彦润 陈晓刚 赵峥延[3] 王哲 白红升 矫欣雨 檀朝东[2,5] ZHANG Yun;CHEN Yanrun;CHEN Xiaogang;ZHAO Zhengyan;WANG Zhe;BAI Hongsheng;JIAO Xinyu;TAN Chaodong(Changqing Engineering Design Co.,Ltd.,Xi'an,Shaanxi,710005,China;School of Artificial Intelligence,China University of Petroleum(Beijing),Beijing,102249,China;Oil and Gas Technology Research Institute,PetroChina Changqing Oil Field Branch,Xi'an,Shaanxi,710018,China;Xi'an Supcon World Technology Development Co.,Ltd.,Xi'an,Shaanxi,710018,China;School of Petroleum Engineering,China University of Petroleum(Beijing),Beijing,102249,China)
机构地区:[1]长庆工程设计有限公司,陕西西安710005 [2]中国石油大学(北京)人工智能学院,北京102249 [3]中国石油长庆油田分公司油气工艺研究院,陕西西安710018 [4]西安中控天地科技开发有限公司,陕西西安710018 [5]中国石油大学(北京)石油工程学院,北京102249
出 处:《天然气与石油》2025年第1期9-19,共11页Natural Gas and Oil
基 金:国家重大科技项目子课题“阜康西部四工河煤层气高效开发先导实验有序排采模式及无杆举升设备智能化实验项目”(2016ZX05043-004);中国石油长庆油田分公司“揭榜挂帅”科研项目“致密气田智能生产与节能控制技术研究”(2023DJ0806)。
摘 要:针对柱塞气举井产量与井筒积液影响因素复杂、具有动态变化性等难点,开展了数据驱动的气井井筒积液与产量预测模型研究及应用。建立了瞬态多相流模拟器OLGA柱塞气举井生产动态仿真模型,获取不同气藏—井筒—排采参数组合方案的气井生产动态预测仿真样本;利用Spearman秩相关系数法分析了气举井地层因素、井筒参数、井口动态、排采工作制度对气井产气量、产液量、井筒积液量的关联关系及程度;应用卷积神经网络(Convolutional Neural Network,CNN)进行模型训练,建立了柱塞气举井的产气量、产液量、积液量的CNN预测模型;并在长庆神11站的气井群进行了部署验证。研究及现场应用表明:OLGA柱塞气举井生产动态仿真模型可用于柱塞气举井的产气量、产液量、积液量的仿真;建立的CNN预测模型预测精度较高,可解释性强,可以作为柱塞气举井排采工作制度优化的技术基础。To address the challenges posed by the complex and dynamic factors affecting the production and wellbore liquid loading in plunger gas-lift wells,a data-driven prediction model for liquid drainage and gas production in these water-breakthrough wells was developed.A dynamic simulation model for plunger gas-lift wells was established using the transient multiphase flow simulator,generating simulation models for various combinations of reservoir,wellbore,and production parameters.The Spearman rank correlation coefficient method was used to analyze the relationship and degree of association between reservoir formation factors,wellbore parameters,wellhead dynamics,startup/ shutdown procedures and gas production rate,liquid production rate,and wellbore liquid loading.A convolutional neural network(CNN) was used for model training to create predictive models for gas production,liquid production,and liquid loading in plunger gas-lift wells.The model was deployed and validated in the gas well clusters at the Shen 11 station of Changqing Oilfield.The research and field application indicate that the OLGA-based simulation model for plunger gas-lift wells can effectively simulate transient gas production,liquid production,and liquid loading.The CNN-based proxy model demonstrated high prediction accuracy and is highly interpretable,serving as a technical foundation for optimizing the production and liquid drainage procedure of plunger gas-lift wells.
关 键 词:柱塞气举 OLGA仿真 井筒积液 产量预测 卷积神经网络
分 类 号:TE37[石油与天然气工程—油气田开发工程] TE328
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7