一类带有对数项的临界Choquard方程组的基态解  

Ground state solutions of a class of critical Choquard systems with logarithmic terms

在线阅读下载全文

作  者:桑彦彬 蔚艳 史娜[1] SANG Yanbin;YU Yan;SHI Na(School of Mathematics,North University of China,Taiyuan 030051,China)

机构地区:[1]中北大学数学学院,山西太原030051

出  处:《中山大学学报(自然科学版)(中英文)》2025年第2期138-147,共10页Acta Scientiarum Naturalium Universitatis Sunyatseni

基  金:山西省基础研究计划(202103021224198);山西省科技战略研究专项(202304031401075)。

摘  要:考虑一类Choquard型耦合方程组,其中非线性项含有对数项和Hardy-Littlewood-Sobolev临界指数.当对数项的系数均为负值时,借助单个临界Choquard方程相应的局部极小点的存在性,建立了该系统对应能量泛函在Nehari流形中Palais-Smale序列的收敛性,进而利用Ekeland变分原理,获得了其具有极小能量的正解存在性.同时在对参数施加与线性问题相关的第一特征值的限制条件下,构造了上述系统具有负能量水平的非负解的存在性.本文的结果扩展了对数项系数为正值的情形,分析了系数的负性对能量泛函几何结构的影响,是对经典Sobolev临界系统在Choquard算子上的推广和延伸.A class of Choquard type coupled systems are considered,where Hardy-Littlewood-Sobolev critical exponents and logarithmic terms are contained in nonlinear terms.If the coefficients of logarithmic terms are both negative,Palais-Smale sequences of the energy functional corresponding to above problems in Nehari manifold are established by using of the existence on a local minima of single critical Choquard equation.Furthermore,by adopting Ekeland’s variational principle,some restricted conditions under which the parameters are related to the first eigenvalue of linear operator with Dirichlet boundary conditions are given.The nonnegative solution with negative energy level of above systems is obtained.Our work generalizes the cases that the coefficients of logarithmic terms are positive,and analyzes the impact of negative coefficients on geometry structure of the energy functional.In fact,our results extend classical Sobolev critical systems to the corresponding Choquard problems.

关 键 词:Choquard型系统 对数项 基态解 临界指数 耦合项 

分 类 号:O175.8[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象