检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Ruopeng Pei
机构地区:[1]Computer and Math Teaching Department,Shenyang Normal University Shenyang 110034,China
出 处:《IJLAI Transactions on Science and Engineering》2025年第1期22-28,共7页IJLAI科学与工程学报汇刊(英文)
摘 要:In the pedestrian detection scenario,the detection algorithm usually misses obscured and distant fuzzy pedestrians,and at the same time cannot take into account the detection accuracy and speed.In this paper,we propose a modified YOLOv5 model for pedestrian detection.Firstly,the backbone network uses the SPD-GCONV module constructed by the combination of SPD(Space-to-Depth)module and Ghost convolution for down-sampling to reduce the loss of fine-grained feature information.Secondly,the multi-scale detection ability of the model is enhanced by adding a small size detection layer.Then,the original CIoU loss function is replaced by α-EloU loss function to improve the accuracy of pedestrian target location.According to the experiments on WiderPerson data set,the average detection accuracy is improved by 2%compared with other pedestrian detection algorithms on the premise of ensuring the detection speed.Experimental results show that the improved algorithm can significantly improve the detection performance.
关 键 词:Pedestrian detection Space-to-Depth module Ghost convolution α-EloU
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49