检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:彭富伦[1] 裴昊晨 刘超 李双全[1] 赵妍 PENG Fulun;PEI Haochen;LIU Chao;LI Shuangquan;ZHAO Yan(Xi’an Institute of Applied Optics,Xi’an 710065,China;School of Weapon Science and Technology,Xi’an Technological University,Xi’an 710021,China;Xi’an Military Representative Bureau,Xi’an 710021,China;School of Electronic Information Engineering,Xi’an Technological University,Xi’an 710021,China)
机构地区:[1]西安应用光学研究所,西安710065 [2]西安工业大学兵器科学与技术学院,西安710021 [3]西安军代局,西安710021 [4]西安工业大学电子信息工程学院,西安710021
出 处:《国外电子测量技术》2025年第1期103-109,共7页Foreign Electronic Measurement Technology
摘 要:无人机在城市作战的复杂环境中,目标对象不仅种类繁多且密集分布,极易遭遇相互遮挡的情况;此外,由于无人机视角下的目标尺寸显著缩小,因此,检测过程中会出现漏检和误检的问题出现。针对以上问题提出了一种无人机目标检测算法PCAC-YOLO。为了增强遮挡目标边缘信息的表征能力,通过裁剪CBS层和添加基于相似度的激活模块(Similarity-Aware Activation Module,SimAM)注意力机制,设计了新的空间池化连接自注意力机制(Spatial Pooling Connect Self-Attention Mechanisms,SPCSM)模块。同时引入卷积特征提取模块Conv2Former,提高了模型对小目标特征的关注能力。实验结果表明,在AU-AIR数据集中,相较于原始的YOLOv7算法,Precision值增加至52.8%,提升了14.1%;mAP@0.5值增加至41.4%,提升了6.1%;mAP@0.5:0.95|small值为16.2%,提升了1.7%。该目标算法有效提升了在城市作战环境无人机视角下的目标检测准确率,证明了设计算法的有效性。In the complex environment of unmanned aerial vehicles(UAV)in urban combat,the target objects are not only diverse and densely distributed,which are very likely to encounter mutual occlusion,in addition,the detection process will trigger the situation of omission and misdetection problems due to the significant reduction of the target size under the UAV viewpoint.A UAV target detection algorithm,PCAC-YOLO,was proposed to address the above problems,and in order to enhance the characterization ability of the edge information of the occluded target,a new SPCSM module was designed by cropping the CBS layer and adding the SimAM attention mechanism.The ability of the model to recognize small-size target features was enhanced by integrating the convolutional feature extraction unit Conv2Former.The experimental data show that on the AU-AIR dataset,compared with the original YOLOv7 algorithm,the Precision value is 52.8%,which is improved by 14.1%;mAP@0.5 value is 41.4%,which is improved by 6.1%;and mAP@0.5:0.95|small,which is improved by 16.2%,which is improved by 1.7%.It effectively improves the accuracy of target detection under UAV view in urban combat environment and proves the effectiveness of the designed algorithm.
关 键 词:城市作战 目标检测 YOLOv7 PCAC-YOLO 无人机视角
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程] V18[自动化与计算机技术—控制科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7