基于GWO-RBF神经网络的城市机动车能耗预测  

Urban Motor Vehicle Energy Consumption Prediction Based on GWO-RBF Neural Network

在线阅读下载全文

作  者:李四洋 张瑞 李雅男[1] 陈贺鹏 陈艳艳[1] LI Si-yang;ZHANG Rui;LI Ya-nan;CHEN He-peng;CHEN Yan-yan(Beijing Urban Transportation Collaborative Innovation Center,Beijing University of Technology,Beijing 100124,China;CCCC Highway Consultants Co.,Ltd.,Beijing 100010,China)

机构地区:[1]北京工业大学北京城市交通协同创新中心,北京100124 [2]中交公路规划设计院有限公司,北京100010

出  处:《科学技术与工程》2025年第8期3480-3486,共7页Science Technology and Engineering

基  金:国家重点研发计划(2022YFB2602104)。

摘  要:在交通碳达峰和碳中和的背景下,高精度、细粒度、可实施性强的机动车能耗实时预测方法成为交通减碳关键组成之一。针对传统基于回归的车辆能耗模型普适性较差的问题,提出了一种基于径向基函数神经网络(radial basis function neural network,RBFNN)的车辆能耗预测模型。首先分析车辆能耗影响因素并基于Min-Max标准化方法对影响因素矩阵进行归一化处理,然后基于灰狼算法(grey wolf optimization,GWO)优化RBFNN算法隐藏层中心点、高斯函数的宽度和隐含层与输出层连接的权值的训练,最后从横向模型对比和实车实测数据进行模型预测准确度分析。测试结果表明:RBFNN算法预测准确度较传统回归模型提高约12%,整体准确度达到90%以上,能够很好地对城市机动车能耗进行预测。In the context of achieving carbon peak and carbon neutrality in transportation,high-precision,fine-grained,and highly feasible real-time prediction methods for motor vehicle energy consumption have become key components in reducing carbon emissions.Addressing the issue of limited universality in traditional regression-based vehicle energy consumption models,a prediction model based on the radial basis function neural network(RBFNN)has been developed.Firstly,the influencing factors of vehicle energy consumption were analyzed,and the influence factor matrix was normalized using the Min-Max standardization method.Then,the grey wolf optimization(GWO)algorithm was employed to optimize the training of the centers of the hidden layer,the width of the Gaussian function,and the weights connecting the hidden layer to the output layer in the RBFNN algorithm.Finally,a comprehensive analysis of the model s prediction accuracy was conducted through horizontal model comparisons and real-world vehicle measurements.The test results demonstrate that the RBFNN algorithm improves prediction accuracy by approximately 12%compared to traditional regression models,achieving an overall accuracy of over 90%.This makes it highly effective in accurately predicting the energy consumption of urban motor vehicles.

关 键 词:机动车 能耗 径向基函数神经网络(RBFNN) 灰狼算法(GWO) 

分 类 号:U491[交通运输工程—交通运输规划与管理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象