基于改进遗传算法的立体纸库货位优化研究  

Research on Slot Optimization of Three-Dimensional Paper Warehouse Based on Improved Genetic Algorithm

作  者:杨帆 左学斌 杨文杰[1] YANG Fan;ZUO Xue-bin;YANG Wen-jie(College of Printing and Packaging Engineering,Beijing Institute of Graphic Communication,Beijing 102600,China)

机构地区:[1]北京印刷学院印刷与包装工程学院,北京102600

出  处:《印刷与数字媒体技术研究》2025年第2期153-161,共9页Printing and Digital Media Technology Study

摘  要:针对印刷纸库货物摆放智能决策的问题,本研究首先建立仓库模型,根据货物存放的需求原则确立多目标函数,以达到合理货位安排。然后,基于遗传算法改进了货位分配优化算法,设计了基因编码、交叉、变异等具体流程及参数,并引入自然界中的灾变思想。最后,根据改写的退火公式控制灾变频率与迭代次数,避免灾变过快或过慢影响搜索效率。根据实验结果分析得出,改进后算法相较于传统遗传算法结果更加可靠稳定,同时因为避免了无效迭代,所以执行效率更高并具有柔性特点,可结合原有货物对货位进行选择。本研究提出的货位分配优化算法可与仓库管理系统结合使用,提高仓储运营效率。Aims at the intelligent decision-making problem of freight placement in the printing company’s paper warehouse,first,in this study,an appropriate warehouse model was established,and a multi-objective function according to the requirements of the cargo storage principle was established,to realize a reasonable cargo location arrangement.Then,based on the genetic algorithm,the slot allocation optimization algorithm was improved,the specific processes and parameters,such as parts like gene coding,cross,and mutation,were designed,and the disaster idea in nature was introduced.Finally,the catastrophe frequency and the iterations were controlled according to the rewritten annealing formula to avoid affecting the search efficiency due to too fast or too slow catastrophe.The analysis of the experimental results showed that,the improved algorithm is more reliable and stable than the traditional genetic algorithm.At the same time,because the invalid iteration is avoided,the execution efficiency is higher.The algorithm is flexible and the cargo location can be selected in combination with the original freights.The slot allocation optimization algorithm proposed in this study can be used in warehouse management systems to improve the efficiency of warehouse operations.

关 键 词:货位优化 遗传算法 退火算法 

分 类 号:TS808[轻工技术与工程] TP312[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象