面向中文医学命名实体识别的判别式与生成式语言模型比较研究  

A Comparative Study of Discriminative Language Model and Generative Language Model for Chinese Medical Named Entity Recognition

在线阅读下载全文

作  者:刘伟[1] 薛航 张晗[1] Liu Wei;Xue Hang;Zhang Han(School of Health Management,China Medical University,Shenyang 110122)

机构地区:[1]中国医科大学健康管理学院,沈阳110122

出  处:《图书情报工作》2025年第5期107-116,共10页Library and Information Service

基  金:辽宁省教育厅基本科研项目“基于深度学习的线上用户慢性病健康教育问答模型研究”(项目编号:LJKR0275)研究成果之一。

摘  要:[目的/意义]比较以BERT为代表的判别式语言模型与以ChatGPT为代表的生成式语言模型完成中文医学文本命名实体识别任务的效果,以期为生物医学领域的命名实体识别提供参考。[方法/过程]设计6种BERT拼接不同类型深度学习网络的抽取模型,同时针对ChatGPT设计融合不同维度元素的提示语,采用精确匹配和宽松匹配两种方式对中文医学实体的抽取效果进行评价。[结果/结论 ]在判别式语言模型中,BERT-BiLSTMCRF模型表现最优,其精确匹配与宽松匹配F1值分别达到85.71%和89.49%;在生成式语言模型中,结合提示语框架的GPT_baseline+A+three-shot模型取得最佳效果,其精确匹配与宽松匹配F1值分别为78.14%和84.73%。本研究场景下,BERT系列模型取得相对好的效果。精心设计的ChatGPT提示语框架能显著增强模型对命名实体识别任务的理解,有望成为未来自然语言处理领域的新突破点。[Purpose/Significance]To provide reference for named entity recognition in biomedical field,this article compares the effect of the discriminative language model represented by BERT and the generative language model represented by ChatGPT in Chinese medical texts named entity recognition tasks.[Method/Pro-cess]This article designed six models of BERT splicing different types of deep learning networks.Meanwhile,prompts with different dimensional elements were designed for ChatGPT,and the extracting results were evaluat-ed by exact matching and loose matching respectively.[Result/Conclusion]Among the discriminative language models,BERT-BiLSTM-CRF model has the best performance,with F1 values of exact match and loose match reaching 85.71%and 89.49%respectively.In generative language models,GPT_baseline+A+three-shot model that combined with prompt language framework achieves the best results,and its exact match and loose match F1 values are 78.14%and 84.73%respectively.In this study,BERT series model achieves relatively best results.The well-designed prompt framework for ChatGPT could significantly enhance the model’s understanding of named entity recognition tasks,and is expected to be a new breakthrough in natural language processing tasks in the future.

关 键 词:命名实体识别 深度学习网络 生成式语言模型 判别式语言模型 

分 类 号:TP391.1[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象