PINN for solving forward and inverse problems involving integrable two-dimensional nonlocal equations  

作  者:Xi Chen Wei-Qi Peng 

机构地区:[1]School of Mathematics,China University of Mining and Technology,Xuzhou 221116,China [2]School of Mathematical Sciences,Ocean University of China,Qingdao 266100,China

出  处:《Communications in Theoretical Physics》2025年第2期13-20,共8页理论物理通讯(英文版)

摘  要:In this paper,the physics informed neural network(PINN)deep learning method is applied to solve two-dimensional nonlocal equations,including the partial reverse space y-nonlocal Mel'nikov equation,the partial reverse space-time nonlocal Mel'nikov equation and the nonlocal twodimensional nonlinear Schr?dinger(NLS)equation.By the PINN method,we successfully derive a data-driven two soliton solution,lump solution and rogue wave solution.Numerical simulation results indicate that the error range between the data-driven solution and the exact solution is relatively small,which verifies the effectiveness of the PINN deep learning method for solving high dimensional nonlocal equations.Moreover,the parameter discovery of the partial reverse space-time nonlocal Mel'nikov equation is analysed in terms of its soliton solution for the first time.

关 键 词:two dimensional nonlocal equations PINN soliton solution rogue wave inverse problems 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象