基于事件触发强跟踪滤波的卫星系统故障估计  

An event-triggered strong tracking filter approach to fault estimation for satellite systems

在线阅读下载全文

作  者:刘娇娇 薛婷 钟麦英 LIU Jiao-jiao;XUE Ting;ZHONG Mai-ying(College of Electrical Engineering and Automation,Shandong University of Science and Technology,Qingdao Shandong 266590,China)

机构地区:[1]山东科技大学电气与自动化工程学院,山东青岛266590

出  处:《控制理论与应用》2025年第2期272-280,共9页Control Theory & Applications

基  金:国家自然科学基金项目(62233012,62103247);山东省泰山学者特聘教授项目资助.

摘  要:针对卫星姿态控制系统执行机构故障估计问题,本文提出一种基于动态事件触发的强跟踪滤波(STF)方法.通过将系统执行机构故障增广为系统状态向量,在动态事件触发机制下,采用STF方法设计故障估计器,并对估计器进行线性化处理得到状态估计误差系统,从而实现增广状态估计误差与事件触发误差完全解耦.基于此,故障估计器的设计问题转化为寻找能够最小化增广状态估计误差协方差的滤波器增益矩阵,且增益矩阵的设计与事件参数设置相互独立.与现有的事件触发故障估计方法相比,本文所提方法的主要贡献在于能够使得增广状态估计误差与事件触发误差完全解耦.最后,通过一个卫星姿态控制系统验证了所提算法的有效性.A dynamic event-triggered strong tracking filter(STF)approach to actuator fault estimation of satellite attitude control system is proposed in this paper.Under the dynamic event-triggered mechanism,an STF based fault estimator is designed by augmenting the actuator fault as a system state vector,and then a state estimation error system is obtained by linearizing such an estimator.In this way,the full-decoupling of the augmented state estimation error from the eventtriggered transmission error is realized.Based on this,the design problem of the fault estimator is converted into finding a filter gain matrix that can minimize the covariance of the augmented state estimation error.It is shown that the design of the filter gain matrix is independent from the event parameters.Compared with the existing event-triggered fault estimation approaches,the novelty of the proposed method lies in its capability to achieve a full-decoupling of the augmented state estimation error from the event-triggered transmission error.Finally,a simulation experiment is carried out on a satellite attitude control system to show the effectiveness of the proposed method.

关 键 词:卫星姿态控制 执行机构故障 动态事件触发机制 强跟踪滤波器 增广系统 

分 类 号:TP3[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象