基于改进RT-DETR的井下输送带跑偏故障检测算法  

Fault detection algorithm for underground conveyor belt deviation based on improved RT-DETR

在线阅读下载全文

作  者:安龙辉 王满利 张长森 AN Longhui;WANG Manli;ZHANG Changsen(School of Physics and Electronic Information,Henan Polytechnic University,Jiaozuo 454000,China)

机构地区:[1]河南理工大学物理与电子信息学院,河南焦作454000

出  处:《工矿自动化》2025年第3期54-62,共9页Journal Of Mine Automation

基  金:国家自然科学基金项目(52074305);河南省科技攻关项目(242102221006)。

摘  要:目前输送带跑偏检测研究主要集中于提取输送带边缘的直线特征,该方式需设定特定阈值,易受环境因素的制约,导致检测速度慢、精度不高。针对该问题,提出了一种基于改进RT-DETR的井下输送带跑偏故障检测算法,使用改进RT-DETR直接对一组托辊检测,根据左右托辊的暴露程度识别是否跑偏。针对实时检测转换器(RT-DETR)主干网络进行3个方面的改进:①为了减少主干网络的参数量和浮点运算数量(FLOPs),使用FasterNet Block替换ResNet34中的BasicBlock;②为了提升模型的精度和效率,在FasterNet Block结构中,引入结构重参数化的思想;③为了提升FasterNet Block在特征提取方面的性能,引入了高效多尺度注意力机制(EMA),更加有效地捕捉全局和局部特征图。为了拓展感受野并捕获更有效、更广泛的上下文信息,以获得更为丰富的特征表达,采用改进高级筛选特征融合金字塔网络(HS-FPN)来优化多尺度特征融合。实验结果表明,与基准模型相比较,改进RT-DETR模型的参数量和FLOPs分别减少了8.4×10^(6)个和17.8 G,mAP@0.5达94.5%,严重跑偏检测精度达99.2%,检测速度达41.0帧/s,优于TOOD,ATSS等目标检测模型,满足煤矿生产对目标检测实时性和准确性的需求。Current research on conveyor belt deviation detection mainly focuses on extracting the straightline features of belt edges.The method requires setting specific thresholds and is easily affected by environmental factors,resulting in slow detection speed and low accuracy.To address the issue,an underground conveyor belt deviation fault detection algorithm based on an improved real-time detection transformer(RT-DETR)was proposed.The improved RT-DETR was used to directly detect a set of idlers and identify deviation based on the exposure degree of the left and right idlers.Three improvements were made to the RT-DETR backbone network:①To reduce the number of parameters and floating-point operations(FLOPs),FasterNet Block was used to replace the BasicBlock in ResNet34.②To enhance model accuracy and efficiency,the concept of structural reparameterization was introduced into the FasterNet Block structure.③To improve the feature extraction capability of FasterNet Block,an efficient multi-scale attention(EMA)Module was incorporated to capture both global and local feature maps more effectively.To expand the receptive field and capture more effective and comprehensive contextual information for richer feature representation,an improved high-level screening feature fusion pyramid network(HS-FPN)was adopted to optimize multi-scale feature fusion.Experimental results showed that compared to the baseline model,the improved RT-DETR reduced parameters and FLOPs by 8.4×10^(6) and 17.8 G,respectively.The mAP@0.5 reached 94.5%,with a severe deviation detection accuracy of 99.2% and a detection speed of 41.0 frame per second,outperforming TOOD and ATSS object detection models,meeting the real-time and accuracy requirements of coal mine production.

关 键 词:输送带跑偏 目标检测 实时检测转换器 结构重参数化 高效多尺度注意力机制 多尺度特征融合 

分 类 号:TD634[矿业工程—矿山机电]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象