检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李鑫 李淑华 陈浩 司垒[1] 魏东 邹筱瑜 LI Xin;LI Shuhua;CHEN Hao;SI Lei;WEI Dong;ZOU Xiaoyu(School of Mechanical and Electrical Engineering,China University of Mining and Technology,Xuzhou 221116,China;National Key Laboratory of Intelligent Mining Equipment Technology,Xuzhou 221116,China)
机构地区:[1]中国矿业大学机电工程学院,江苏徐州221116 [2]智能采矿装备技术全国重点实验室,江苏徐州221116
出 处:《工矿自动化》2025年第3期86-95,共10页Journal Of Mine Automation
基 金:国家自然科学基金项目(52404178);江苏省自然科学基金项目(BK20231064)。
摘 要:采煤机截割部齿轮箱振动监测数据结构复杂,且易出现类别不平衡问题,导致现有基于传统机器学习的智能故障诊断方法易出现错报现象,而基于深度学习的诊断方法模型结构复杂、学习效率低,且易陷入局部最优解,影响诊断性能。针对上述问题,提出了一种基于改进型级联宽度学习(ICBL)的采煤机截割部齿轮箱故障诊断方法。在ICBL模型的特征节点中引入随机超图卷积机制,充分挖掘采煤机截割部齿轮箱振动数据的复杂多元结构信息,增强故障特征表征能力;采用类特异性权重分配策略,根据输入数据的类间比例信息,为少数类样本赋予更高权重,提高不平衡数据下采煤机截割部齿轮箱故障诊断性能。利用采煤机截割部齿轮箱故障模拟实验台验证基于ICBL的采煤机截割部齿轮箱故障诊断方法的有效性,结果表明该方法能够有效增强故障特征的判别性,在数据不平衡度为15时诊断精度达94.52%,单一样本的故障识别耗时为0.284 ms,优于级联宽度学习系统、加权宽度学习系统、多尺度卷积神经网络、超图神经网络、多分辨率超图卷积网络等。The vibration monitoring data of the shearer cutting unit gearbox has a complex structure and is prone to class imbalance issues,leading to frequent false positives in traditional machine learning-based fault diagnosis methods.Meanwhile,deep learning-based approaches often suffer from complex model structures,low learning efficiency,and susceptibility to local optima,negatively impacting diagnostic performance.To address these issues,a fault diagnosis method was proposed for the shearer cutting unit gearbox based on improved cascaded broad learning(ICBL).A random hypergraph convolution mechanism was introduced into the feature nodes of the ICBL model to fully exploit the complex multivariate structural information in the vibration data of the shearer cutting unit gearbox,thereby enhancing the representation of fault features.Additionally,a classspecific weight allocation strategy was adopted to assign higher weights to minority class samples based on the class distribution of the input data,improving fault diagnosis performance under imbalanced data conditions.The effectiveness of the ICBL-based fault diagnosis method was validated using a shearer cutting unit gearbox fault simulation test platform.Experimental results demonstrated that the proposed method effectively enhanced the discriminability of fault features,achieving a diagnostic accuracy of 94.52% when the data imbalance ratio was 15,with a fault recognition time of 0.284 ms per sample.The method outperformed cascaded broad learning systems,weighted broad learning systems,multi-scale convolutional neural networks,hypergraph neural networks,and multi-resolution hypergraph convolutional networks,demonstrating significant engineering application value.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28