The inhomogeneous incompressible Hall-MHD system with only bounded density  

在线阅读下载全文

作  者:Jin Tan Lan Zhang 

机构地区:[1]Laboratoire de Mathématiques AGM,UMR CNRS 8088,Cergy Paris Université,Cergy-Pontoise Cedex 95302,France [2]Center for Mathematical Sciences and Department of Mathematics,Wuhan University of Technology,Wuhan 430070,China

出  处:《Science China Mathematics》2025年第4期839-872,共34页中国科学(数学英文版)

基  金:supported by the Agence Nationale de la Recherche Project BORDS(Grant No.ANR-16-CE40-0027-01);the Labex MME-DII;and the CY Initiative of Excellence;Project CYNA(CY Nonlinear Analysis);supported by National Natural Science Foundation of China(Grant No.12101472)。

摘  要:This paper is dedicated to the global-in-time existence and uniqueness issues of solutions for the inhomogeneous incompressible Hall-magnetohydrodynamics(MHD)system with merely bounded density.In a three-dimensional case,assuming that the initial density is a small perturbation of a positive constant in the L∞norm,we prove global well-posedness for small initial velocity and magnetic fields in critical Besov spaces.Next,we consider the so-called 21/2D flows for the inhomogeneous Hall-MHD system(that is 3D flows independent of the vertical variable)and establish the global existence of strong solutions by only assuming that the initial magnetic field is small in critical spaces and the initial density is bounded and bounded away from zero.In particular,those solutions allow piecewise constant density with jumps so that a mixture of fluids can be considered.Compared with inhomogeneous incompressible Navier-Stokes equations,the new difficulties of proving these results come from the additional so-called Hall term,which endows the magnetic equation with a quasi-linear character.In order to overcome them,we reformulate the system by taking advantage of the curl form of the magnetic equation and develop some new maximal regularity estimates for the Stokes system with just bounded coefficients.

关 键 词:inhomogeneous Hall-MHD system discontinuous density critical regularity maximal regularity 

分 类 号:O175[理学—数学] O361.3[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象