机构地区:[1]口腔疾病防治全国重点实验室,国家口腔医学中心,国家口腔疾病临床医学研究中心,四川大学华西口腔医院修复科,成都610041
出 处:《华西口腔医学杂志》2025年第2期175-182,共8页West China Journal of Stomatology
基 金:国家重点研发计划(2022YFC2410103);国家自然科学基金(82471021)。
摘 要:目的使用基于立体光固化成型(SLA)原理的3D打印技术成型牙科用二硅酸锂陶瓷,以探讨不同浆料配比对热处理后样本的微观结构及性能的影响。方法以3D打印成型二硅酸锂为实验组,商品化的IPS e.max CAD切削类二硅酸锂陶瓷为对照组。实验组选用不同粒径的二硅酸锂陶瓷粉体材料(纳米级和微米级),与丙烯酸酯类光固化树脂混合,并调整浆料中实验原料的比例,配制5组陶瓷浆料(S1组-S5组)。根据浆料的流变特性、稳定性等状况评估其3D打印性能并筛选出适宜配比。对优选配比的实验组进行打印、脱脂及烧结程序,检测实验组的微观结构、晶体学信息以及收缩率,同时测量其弯曲强度、弹性模量、维氏硬度、断裂韧性等力学性能,与对照组进行比较。结果5组中筛选出2组用于3D打印的高固含量(75%)二硅酸锂陶瓷浆料(S2组和S3组)。X射线衍射及扫描电子显微镜结果显示,在S2组和S3组中,二硅酸锂均为主要晶相,显微结构为细长均匀、排列致密的晶体;二硅酸锂晶粒尺寸分别为(559.79±84.58)nm和(388.26±61.49)nm(P<0.05)。能谱分析结果显示,2组陶瓷样本均含有较高比例的Si和O元素。热处理后2组陶瓷样本的收缩率为18.00%~20.71%。2组的所有力学性能测试结果差异均无统计学意义(P>0.05),弯曲强度分别为(231.79±21.71)MPa和(214.86±46.64)MPa,低于IPS e.max CAD组(P<0.05);弹性模量分别为(87.40±12.99)GPa和(92.87±19.76)GPa,与IPS e.max CAD组差异无统计学意义(P>0.05);维氏硬度分别为(6.53±0.19)GPa和(6.25±0.12)GPa,高于IPS e.max CAD组(P<0.05);断裂韧性分别为(1.57±0.28)MPa·m0.5和(1.38±0.17)MPa·m^(0.5),与IPS e.max CAD组差异无统计学意义(P>0.05)。结论不同粒径级的二硅酸锂陶瓷粉体组合,可获得高固含量(75%)、有适宜的黏度和稳定性的浆料。3D打印技术可成功制备牙科二硅酸锂陶瓷样本,热处理后样本的收缩率较小,微观结构符合二Objective This study aims to use 3D printing technology based on the principle of stereo lithography apparatus(SLA)to shape dental lithium disilicate ceramics and study the effects of different slurry proportions on the microstructure and properties of heat-treated samples.Methods The experimental group comprised lithium disilicate ceramics manufactured through SLA 3D printing,and the control group comprised lithium disilicate ceramics (IPS e.max CAD) fabricated through commercial milling. Anarray of different particle sizes of lithium disilicate ceramic powder materials (nano and micron) was selected for mixingwith photocurable acrylate resin. The proportion of experimental raw materials was adjusted to prepare five groups of ceramicslurries for 3D printing (Groups S1-S5) on the basis of rheological properties, stability, and other factors. Printing,debonding, and sintering were conducted on the experimental group with the optimal ratio, followed by measurements ofmicrostructure, crystallographic information, shrinkage, and mechanical properties. Results Five groups of lithium disilicateceramic slurries were prepared, of which two groups with high solid content (75%) (Groups S2 and S3) were selectedfor 3D printing. X-ray diffraction and scanning electron microscopy results showed that lithium disilicate was themain crystalline phase in Groups S2 and S3, and its microstructure was slender, uniform, and compact. The average grainsizes of Groups S2 and S3 were (559.79±84.58) nm and (388.26±61.49) nm, respectively (P<0.05). Energy spectroscopyrevealed that the samples in the two groups contained a high proportion of Si and O elements. After heat treatment, theshrinkage rate of the two groups of ceramic samples was 18.00%-20.71%. Test results revealed no statistical difference inall mechanical properties between Groups S2 and S3 (P>0.05). The flexural strengths of Groups S2 and S3 were(231.79±21.71) MPa and (214.86±46.64) MPa, respectively, which were lower than that of the IPS e.max CAD group(P<0.05). The elasti
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...