检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴辉 WU Hui(Huxin Cement CO.,Ltd.,Wuhan 430205,China)
出 处:《数字制造科学》2024年第4期284-289,共6页
摘 要:针对混凝土布料臂架在浇筑平面时,采用传统蚁群优化算法(ACO)进行避障路径规划,其仅以避障路径代价为路径评价指标,规划路径通常非最优解等问题,提出融合改进的ACO-GA避障路径规划算法。通过引入信息素矩阵调整策略并改进启发函数,提升ACO算法搜索性能与收敛速度。针对ACO规划的路径非全局最优、平滑性差等问题,引入了遗传算法(GA),将初步规划的路径集合作为GA算法的初始种群,提出考虑路径平滑性与控制节点数量的适应度函数与适应度加权交叉算子,使得规划的路径质量更优。仿真场景与模拟避障场景试验结果表明,提出的改进ACO-GA算法在规划避障路径时,路径长度、平滑性与算法收敛速度等指标均优于改进前算法,且规划路径符合臂架的运动要求。When the traditional Ant Colony Optimization(ACO)algorithm is applied to obstacle avoidance path planning for concrete placing booms during pouring,it often results in suboptimal paths,as it relies solely on obstacle avoidance path cost as the evaluation criterion.To address this,an improved ACO-GA fusion algorithm is proposed.The approach enhances the search performance and convergence speed of the ACO algorithm by introducing a pheromone matrix adjustment strategy and an improved heuristic function.To tackle the issues of non-global optimality and poor smoothness in ACO-generated paths,the Genetic Algorithm(GA)is integrated,using the initial path set generated by ACO as the initial population for GA.A custom fitness function is designed,incorporating considerations for path smoothness and the number of control nodes,along with a fitness-weighted crossover operator to further enhance path quality.Simulation scenarios and experimental results in obstacle avoidance environments demonstrate that the improved ACO-GA algorithm surpasses the original algorithms in terms of path length,smoothness,and algorithm convergence speed.Additionally,the planned paths meet the motion requirements of the placing boom system.
关 键 词:改进蚁群算法 改进遗传算法 混凝土布料臂 避障规划
分 类 号:TU646[建筑科学—建筑技术科学] TP27[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.66