检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张昆 ZHANG Kun(State Grid Xuzhou Power Supply Company,Xuzhou,Jiangsu 221005,China)
出 处:《自动化应用》2025年第6期186-188,共3页Automation Application
摘 要:现有低压配网线损率自动预测方法未筛选影响线损的参数,造成其预测效果较差。为解决这一问题,提出基于改进BP神经网络的低压配网线损率自动预测方法。该方法先筛选线损率影响参数,然后建立全面反映线损电气特性的指标体系,最后建立自动检测模型,实现配网线损率自动预测。实验结果表明,应用所提方法得到的预测值与实测值之间误差小于0.001%,应用效果较好。The existing automatic prediction method of line loss rate of low-voltage distribution network does not screen the influencing line loss parameters,resulting in its poor prediction effect.To solve this problem,an automatic prediction method of low-voltage distribution line loss rate based on improved BP neural network is proposed.This method first selects the influence parameters of line loss rate,then establishes an index system reflecting the electrical characteristics of line loss,and finally establishes an automatic detection model to realize the automatic prediction of distribution line loss rate.The experimental results show that the error between the predicted value and the measured value of the proposed method is less than 0.001%,and the application effect is good.
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7