检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郭钊 任晓丹[2] 和东宏 GUO Zhao;REN Xiaodan;HE Donghong(College of Architecture Engineering and Planning,Jiujiang University,Jiujiang,Jiangxi 332005,P.R.China;College of Civil Engineering,Tongji University,Shanghai 200092,P.R.China;College of Civil Engineering and Architecture,West Yunnan University of Applied Sciences,Dali,Yunnan 671006,P.R.China)
机构地区:[1]九江学院建筑工程与规划学院,江西九江332005 [2]同济大学土木工程学院,上海200092 [3]滇西应用技术大学建筑工程学院,云南大理671006
出 处:《应用数学和力学》2025年第3期371-381,共11页Applied Mathematics and Mechanics
基 金:国家自然科学基金(12162015,12362018);江西省自然科学基金(面上项目)(20202BABL201015)。
摘 要:针对固体材料含有“裂纹-夹杂”的数值模拟问题,将Eshelby本征应变和等效夹杂替换理论引入边界积分方程中,建立了本征裂纹张开位移(crack opening displacement,COD)和本征应变边界积分方程的计算模型及数值实现,以解决“裂纹-夹杂”的相互作用机制.在一定条件下,异性夹杂可以作为一般的夹杂问题处理,物理上可令夹杂的弹性模量为零,则该夹杂就“退化”为孔洞;同时,在几何上可令其最小尺寸方向上的尺寸为零,即可进一步“退化”为裂纹,因而裂纹可被认为是弹性模量为零的一种特殊夹杂.采用边界积分方程的离散形式对裂纹和夹杂问题进行了数值验证,其中裂纹和夹杂的边界分别采用Gauss配点法和边界点法进行离散,进行了应力分析,研究了裂纹与夹杂的相互作用.数值算例验证了本征计算模型处理“裂纹-夹杂”问题的正确性和方法的可行性,也表现出较高的计算精度,为该计算模型的大规模数值分析奠定了理论基础.For the numerical modeling of solid materials containing crack-inclusions, the theory of Eshelby's eigenstrain and equivalent inclusion was incorporated into the boundary integral equations(BIEs). A computation model and an iterative algorithm for the eigen crack opening displacement(COD) and eigenstrain BIEs to address the interaction of crack-inclusions were proposed. Under certain conditions, anisotropic inclusions may be considered as general inclusions. When the elastic modulus of the inclusion is set to zero, the inclusion will degenerate into a hole, and geometrically, with its minimum dimension reduced to zero further it will degenerate into a crack. Thereby, a crack was classified as a special type of inclusion with zero elastic modulus. The discrete form of the boundary integral equation was utilized for the numerical validation of cracks and inclusions, with their boundaries discretized with Gaussian integration points and the boundary point methods, respectively, to conduct stress analysis and investigate the interaction between crack-inclusions. Numerical examples confirm the correctness and feasibility of the eigen iterative model in modeling crack-inclusion problems, demonstrating its high computation accuracy, and providing the theoretical foundation for future large-scale numerical analysis with this computation model.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33