基于改进遗传算法的磁流变阻尼器模型参数辨识方法  

Parameter identification method for Magneto-Rheological damper model based on improved genetic algorithm

在线阅读下载全文

作  者:於天澄 YU Tiancheng(Faculty of Civil Engineering and Mechanics,Jiangsu University,Zhenjiang 212013,China)

机构地区:[1]江苏大学土木工程与力学学院,江苏镇江212013

出  处:《电子设计工程》2025年第7期192-196,共5页Electronic Design Engineering

摘  要:针对磁流变阻尼器模型参数辨识的准确率低,无法确定变阻尼器模型波形的问题,该文提出基于改进遗传算法的磁流变阻尼器模型参数辨识方法。整合非线性参数模型和磁流变阻尼器阻尼力模型,表征阻尼器的动态行为。在MR阻尼器处理中,引入精细的适应度评价机制和自适应调整的交叉概率与变异概率改进遗传算法,实现磁流变阻尼器模型参数辨识。实验结果表明,该辨识方法能够很好地确定阻尼器模型的波形,辨识误差低于2 A,并且得到的参数分布情况与实际分布情况吻合,具有较好的实际应用价值。Aiming at the problem that the accuracy of parameter identification of MR damper model is low and the waveform of variable damper model cannot be determined,an MR damper model parameter identification method is proposed based on improved genetic algorithm.The nonlinear parameter model and the damping force model of MR damper are integrated to characterize the dynamic behavior of the damper.In MR damper processing,a refined fitness evaluation mechanism and an improved genetic algorithm of cross probability and mutation probability are introduced to realize parameter identification of MR damper model.The experimental results show that the identification method can well determine the waveform of the damper model,the identification error is lower than 2 A,and the obtained parameter distribution is consistent with the actual distribution,which has good practical application value.

关 键 词:改进遗传算法 磁流变阻尼器 阻尼器模型 参数辨识 

分 类 号:TN05[电子电信—物理电子学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象