检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴洪宇 徐冠华[2,3] 唐波[1] 秦炜 WU Hongyu;XU Guanhua;TANG Bo;QIN Wei(College of Metrology Measurement and Instrument,China Jiliang University,Hangzhou Zhejiang 310018,China;State Key Laboratory of Fluid Power and Mechatronic Systems,Zhejiang University,Hangzhou Zhejiang 310027,China;Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province,Zhejiang University,Hangzhou Zhejiang 310027,China;Zhejiang Hangji Machine Tool Co.,Ltd.,Hangzhou Zhejiang 310012,China)
机构地区:[1]中国计量大学计量测试与仪器学院,浙江杭州310018 [2]浙江大学,流体动力基础件与机电系统全国重点实验室,浙江杭州310027 [3]浙江大学,浙江省三维打印工艺与装备重点实验室,浙江杭州310027 [4]浙江杭机股份有限公司,浙江杭州310012
出 处:《机床与液压》2025年第5期64-74,共11页Machine Tool & Hydraulics
基 金:国家自然科学基金青年科学基金项目(51805477);浙江省尖兵领雁研发攻关计划(2023C01059)。
摘 要:针对刀具磨损状态分类识别精度不高的问题,提出一种基于MCADBO-SVM的刀具磨损状态监测方法。在传统蜣螂优化算法(DBO)算法基础上,引入Circle映射和自适应可变惯性权重,提出Circle自适应权重蜣螂优化(CADBO)算法,提升了算法的整体寻优和收敛性能。引入多域完全特征提取和多重特征选择技术(MFST),并将CADBO用于支持向量机(SVM)中的核函数和惩罚因子的择优问题,建立了基于MCADBO-SVM的刀具磨损状态监测模型。在公开数据集PHM2010上进行实验,结果显示:与多种方法相比,此模型的综合性能最优,检测准确率达到了95.24%。Aiming at the problem of low accuracy of tool wear state classification and identification,a tool wear state monitoring method based on MCADBO-SVM was proposed.Based on the traditional dung beetle optimizer(DBO)algorithm,the Circle adaptive weight dung beetle optimizer(CADBO)algorithm was proposed by introducing Circle mapping and adaptive variable inertia weights.The overall optimization and convergence performance of the algorithm was improved.The multi-domain complete feature extraction and multiple feature selection technique(MFST)were introduced,and CADBO was used for the optimization of kernel function and penalty factor in support vector machines(SVM),and an optimization algorithm for tool wear monitoring based on the MCADBO-SVM algorithm was established.Experiments were conducted on the publicly available dataset PHM2010.The results show that the model has the best overall performance and the detection accuracy reaches 95.24%compared with traditional methods such as SVM.
关 键 词:刀具磨损监测模型 振动信号 蜣螂优化算法 支持向量机 特征降维
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7