基于WPG-KNMF的非线性动态过程监控研究  

Research on nonlinear dynamic processes monitoring based on WPG-KNMF

在线阅读下载全文

作  者:张成[1] 邓成龙 李元 ZHANG Cheng;DENG Cheng-long;LI Yuan(College of Science,Shenyang University of Chemical Technology,Shenyang Liaoning 110142,China;College of Computer Science and Technology,Shenyang University of Chemical Technology,Shenyang Liaoning 110142,China;College of Information Engineering,Shenyang University of Chemical Technology,Shenyang Liaoning 110142,China)

机构地区:[1]沈阳化工大学理学院,辽宁沈阳110142 [2]沈阳化工大学计算机科学与技术学院,辽宁沈阳110142 [3]沈阳化工大学信息工程学院,辽宁沈阳110142

出  处:《控制理论与应用》2025年第3期569-578,共10页Control Theory & Applications

摘  要:针对非线性动态过程故障检测问题,本文提出一种基于Wasserstein距离投影梯度核非负矩阵分解(WPGKN-MF)的故障检测方法.首先,采用投影梯度方法对KNMF的基矩阵和系数矩阵进行更新.其次,在高维特征空间中,使用Wasserstein距离结合滑动窗口方法,构造新的统计量进行故障检测.本文方法将KNMF中迭代方法改进为投影梯度方法,通过KNMF将数据的非线性结构捕获,并结合Wasserstein距离消除样本间自相关性影响.通过一个数值例子和基于工业控制系统执行器诊断方法的开发与应用(DAMADICS)过程的实验数据进行仿真实验,与传统核主成分分析(KPCA)、核非负矩阵分解等方法进行对比,仿真结果验证了本文所提方法的有效性.Aiming at the fault detection of nonlinear dynamic processes,a fault detection method based on the Wasserstein distance projection gradient kernel non-negative matrix factorization(WPG-KNMF)is proposed.Firstly,the projection gradient method is used to update the basis matrix and coefficient matrix in kernel non-negative matrix factorization(KNMF).Secondly,the Wasserstein distance combined with the sliding window method is used to construct new statistics for fault detection in high-dimensional feature space.In this paper,the iterative method in KNMF is improved to the projection gradient method.The nonlinear structure of the data is captured by the KNMF and the Wasserstein distance is combined to eliminate the influence of autocorrelation between samples.The proposed approach is tested in a numerical case and in the development and application of methods for actuator diagnosis in industrial control systems(DAMADICS)process.The experimental results indicate that the proposed approach has an advantage over conventional methods,such as the kernel principal component analysis(KPCA)and the kernel non-negative matrix factorization.

关 键 词:核非负矩阵分解 非线性过程 动态过程 投影梯度 Wasserstein距离 故障检测 

分 类 号:TP3[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象