检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘雪松 姚玲 彭天亮 彭霞[1] LIU Xue-song;YAO ling;PENG Tian-liang;PENG Xia(School of Electronic Engineering,Anhui Xinhua University,Hefei Anhui 230088;School of Information Engineering,Nanchang Institute of Technology,Nanchang Jiangxi 330099)
机构地区:[1]安徽新华学院电子工程学院,安徽合肥230088 [2]南昌工程学院信息工程学院,江西南昌330099
出 处:《巢湖学院学报》2024年第6期94-101,共8页Journal of Chaohu University
基 金:国家自然科学基金项目(项目编号:61701215);国家级大学生创新训练项目(项目编号:S202212216095);安徽新华学院校级科研项目(项目编号:2022zr013)。
摘 要:文章在稀疏图约束NMF的基础上提出了一种基于加权残差协同图约束非负矩阵分解的高光谱解混算法(Weighted residual synergetic graph constraint NMF,WRGNMF)。在标准的NMF(Nonnegative Matrix Factorization)算法中,引入一个剩余加权机制,该策略是根据加权因子来处理残差中的值,为解混过程中每个原始像素与重构像素之间的重构误差提供适当的权值,让数据拟合更加精确,提高抗噪性能。同时,为了充分利用光谱图像的空间信息,用l1范数来加强丰度矩阵的稀疏性,用图正则化来保持数据结构的亲和性。模拟和真实实验证实了该算法的有效性,提高解混精度的同时,对噪声更加鲁棒。This paper proposes a hyperspectral unmixing algorithm based on the weighted residual synergetic graph constraint NMF(WRGNMF),building upon the foundation of sparse graph constraint NMF.In the standard NMF algorithm,a residual weighting mechanism is introduced.This strategy processes the values in the residual according to the weighting factor,providing appropriate weights for the reconstruction errors between each original pixel and the reconstructed pixel during the unmixing process,thereby enhancing data fitting accuracy and improving noise resistance.Simultaneously,to fully utilize the spatial information of spectral images,the l1 norm is employed to enhance the sparsity of the abundance matrix,and graph regularization is used to maintain the affinity of the data structure.Both simulated and real experiments demonstrate the effectiveness of the proposed algorithm,which not only improves unmixing accuracy but also exhibits greater robustness to noise.
关 键 词:加权残差 图正则化 稀疏约束 NMF 高光谱解混
分 类 号:TP751[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7