检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张卜涵 彭刚 孙继红 ZHANG Buhan;PENG Gang;SUN Jihong(Department of Medical Imaging,Bengbu Medical University,Bengbu 233000,China;Department of Medical Imaging,Guangde Traditional Chinese Medicine Hospital,Guangde 242200,China;Department of Medical Imaging,Sir Run Run Shaw Hospital,Hangzhou 310000,China)
机构地区:[1]蚌埠医科大学医学影像学院,安徽蚌埠233000 [2]广德市中医院放射科,安徽广德242200 [3]浙江大学医学院附属邵逸夫医院放射科,浙江杭州310000
出 处:《分子影像学杂志》2025年第3期278-283,共6页Journal of Molecular Imaging
基 金:浙江省“领雁”研发攻关计划项目(2024C03047)。
摘 要:目的 探索CT影像学征象在预测小肠间质瘤(SIST)病理风险分层方面的价值。方法 选取2016年1月~2023年12月在浙江大学医学院附属邵逸夫医院通过手术病理证实的186例SIST病例进行回顾性研究,分析其CT征象包括肿块生长位置、大小、边界、形态、密度、内部异常成分(即钙化、囊变、坏死、表面溃疡及瘤内出血)、生长方式、强化方式、滋养血管或血管样强化、静脉期CT值、静脉期与平扫CT值差值,采用多因素Logistic回归构建预测模型,绘制ROC曲线,计算曲线下面积(AUC)比较模型性能。结果 肿瘤大小(OR=4.125,95%CI:2.164~7.864)和CT值差值(OR=0.962,95%CI:0.931~0.993)是SIST风险程度的独立预测因素,其预测SIST病理风险分层的AUC分别为0.932(95%CI:0.891~0.973)和0.858(95%CI:0.802~0.914),基于两者的融合模型性能较好,AUC为0.946(95%CI:0.912~0.981)。结论 SIST在增强CT扫描中的影像特征具有一定的特异性,肿瘤大小和静脉期与平扫CT值差值可以在术前较好地预测SIST的病理风险分层,结合了两者的融合模型较单因素模型具有更高的预测效能。Objective To explore the value of CT imaging features in predicting pathological risk classification of small intestinal stromal tumors(SIST).Methods This retrospective study analyzed 186 cases of SIST confirmed by surgical pathology at Sir Run Run Shaw Hospital from January 2016 to December 2023.The CT imaging features were analyzed,including tumor location,size,boundary,morphology,density,internal abnormal components(calcification,cystic degeneration,necrosis,surface ulceration,and intratumoral bleeding),growth pattern,enhancement pattern,feeding vessels or vessel-like enhancement,venous phase CT value,and the difference of CT values between the venous phase and plain scan.Multivariate logistic regression was employed to construct a predictive model.ROC curves were plotted,and the area under the curve(AUC)was calculated to evaluate and compare the performance of the model.Results Tumor size(OR=4.125,95%CI:2.164-7.864)and difference of CT values(OR=0.962,95%CI:0.931-0.993)were identified as independent predictors for pathological risk classification of SIST,with AUCs of 0.932(95%CI:0.891-0.973)and 0.858(95%CI:0.802-0.914),respectively.The fusion model,incorporating these two factors,demonstrated optimal predictive performance,achieving an AUC of 0.946(95%CI:0.912-0.981).Conclusion The imaging features of SIST on contrast-enhanced CT scans exhibit a certain degree of specificity.Tumor size and the difference of CT values between the venous phase and non-contrast scan serve as reliable preoperative predictors for pathological risk stratification of SIST.The fusion model,which integrates these two factors,demonstrates superior predictive performance compared to single-factor models.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171