检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Xin-heng He Jun-rui Li James Xu Hong Shan Shi-yi Shen Si-han Gao H.Eric Xu
机构地区:[1]State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research,Shanghai Institute of Materia Medica,Chinese Academy of Sciences,Shanghai,201203,China [2]University of Chinese Academy of Sciences,Beijing,100049,China [3]Cascade Pharma,Shanghai,201318,China [4]School of Pharmacy,Fudan University,Shanghai,201203,China
出 处:《Acta Pharmacologica Sinica》2025年第3期565-574,共10页中国药理学报(英文版)
基 金:supported by the Lingang Laboratory,Grant No.LG-GG-202204-01;the National Natural Science Foundation(82121005,32130022);CAS Strategic Priority Research Program(XDB37030103);Shanghai Municipal Science and Technology Major Project(2019SHZDZX02).
摘 要:Therapeutic antibodies are at the forefront of biotherapeutics,valued for their high target specificity and binding affinity.Despite their potential,optimizing antibodies for superior efficacy presents significant challenges in both monetary and time costs.Recent strides in computational and artificial intelligence(AI),especially generative diffusion models,have begun to address these challenges,offering novel approaches for antibody design.This review delves into specific diffusion-based generative methodologies tailored for antibody design tasks,de novo antibody design,and optimization of complementarity-determining region(CDR)loops,along with their evaluation metrics.We aim to provide an exhaustive overview of this burgeoning field,making it an essential resource for leveraging diffusion-based generative models in antibody design endeavors.
关 键 词:ANTIBODIES generative model diffusion de novo antibody design CDR optimization model evaluation
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程] R392[自动化与计算机技术—控制科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7