深度学习下的医学图像分割综述  

Survey of Medical Image Segmentation in Deep Learning

在线阅读下载全文

作  者:邢素霞[1] 李珂娴 方俊泽 郭正 赵士杭 XING Suxia;LI Kexian;FANG Junze;GUO Zheng;ZHAO Shihang(School of Computer and Artificial Intelligence,Beijing Technology and Business University,Beijing 100048,China)

机构地区:[1]北京工商大学计算机与人工智能学院,北京100048

出  处:《计算机工程与应用》2025年第7期25-41,共17页Computer Engineering and Applications

基  金:国家自然科学基金(61671028);北京市自然科学基金(KZ202110011015)。

摘  要:针对医学图像的高维性、复杂性和高精度要求等特性,深度学习下的医学图像分割方法凭借其强大的特征提取能力和对复杂模式的学习能力,能够自适应地从大量数据中学习并提取多层次特征,展现出高精度、高鲁棒性和可扩展性强等优势。通过端到端地提取感兴趣的器官、组织或病变区域,为医生在疾病诊断、制定治疗策略和临床研究等领域提供有力帮助。重点综述了U-Net、Transformer、Mamba、分割一切模型(segment anythingmodel,SAM)及其各自变体模型在医学图像分割中的应用情况和发展脉络,从多个维度进行了综合对比分析,对开展医学影像研究、临床疾病诊断与治疗决策,以及医疗技术创新产品开发均具有一定参考价值。在此基础上,总结了目前医学图像分割研究中面临的挑战,并对该领域未来的研究前景进行展望。In response to the high-dimensional,complex nature and high-precision demands of medical images,deep learning-based segmentation methods excel in feature extraction and complex pattern recognition.These methods adaptively learn and extract multi-level features from vast datasets,demonstrating high accuracy,robustness,and scalability.By end-to-end extraction of organs,tissues,or lesion areas of interest,they provide substantial assistance to physicians in disease diagnosis,treatment planning,and clinical research.This review focuses on the application and development trajectory of U-Net,Transformer,Mamba,and segment anything model(SAM)and their variants in medical image segmentation,offering a comprehensive comparative analysis across multiple dimensions.It holds reference value for medical imaging research,clinical diagnosis and treatment decision-making,and the development of innovative medical technology products.Building on this,the review summarizes current challenges in medical image segmentation research and prospects the future research landscape.

关 键 词:医学图像分割 深度学习 U-Net TRANSFORMER Mamba 分割一切模型(SAM) 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象