检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:朱若雅 陈新军[1,2,3,4] ZHU Ruoya;CHEN Xinjun(College of Marine Living Resource Sciences and Management,Shanghai Ocean University,Shanghai 201306,China;Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources,Ministry of Education,Shanghai 201306,China;National Engineering Research Center for Oceanic Fisheries,Shanghai 201306,China;Key Laboratory of Sustainable Utilization of Oceanic Fisheries,Ministry of Agriculture and Rural Affairs,Shanghai 201306,China)
机构地区:[1]上海海洋大学海洋生物资源与管理学院,上海201306 [2]大洋渔业资源可持续开发教育部重点实验室,上海201306 [3]国家远洋渔业工程技术研究中心,上海201306 [4]农业农村部大洋渔业可持续利用重点实验室,上海201306
出 处:《上海海洋大学学报》2025年第2期403-412,共10页Journal of Shanghai Ocean University
基 金:国家重点研发计划(2023YFD2401303)。
摘 要:为了探究鲣鱼(Katsuwonus pelamis)自由鱼群和随附鱼群资源丰度受环境与其他种群因子影响的差异。采用2011—2020年中西太平洋鲣鱼的生产统计数据,结合同时期海洋环境数据:海表面温度(Sea surface temperature,SST)、海表面盐度(Sea surface salinity,SSS)和叶绿素a质量浓度(Chlorophyll-a mass concentration,Chl.a),以中西太平洋海域的黄鳍金枪鱼(Thunnus albacares)和大眼金枪鱼(Thunnus obesus)的资源丰度作为其他种群因子,基于广义加性模型(Generalized addictive models,GAM)对两种鱼群的影响因素进行分析,并通过赤池信息准则进行模型比较。结果显示,其他种群因子是对两种鱼群影响最大的因子,解释偏差率分别达到了31.40%和67.00%。对于自由鱼群而言,除其他种群因子之外,经度和月份影响较大,其解释偏差率分别为4.15%和4.14%;环境因子中SST最为重要,解释偏差率为3.90%,其次是SSS,解释偏差率为3.78%,Chl.a的影响相对较低,解释偏差率为1.40%;对于随附鱼群而言,除其他种群因子之外,月份和经度影响较大,其解释偏差率分别为20.70%和10.60%;环境因子中SSS影响较大,解释偏差率为8.37%,Chl.a和SST影响较低,解释偏差率为1.13%和0.19%。研究认为,未来的渔情预报模型中需要考虑其他种群因子的影响,以期为今后金枪鱼围网渔场学研究和科学寻找渔场提供参考依据。The main objective of this study is to investigate the differences in the abundance of freeswimming school and associated school of Katsuwonus pelamis influenced by environmental and other population factors.This study utilized the production statistics from 2011 to 2020,combined with marine environmental factors(SST,SSS,Chl.a),the CPUE data for yellowfin tuna and bigeye tuna in the Western and Central Pacific Ocean are used as other population factors.A generalized additive model(GAM)was used to analyze the two fish populations separately,and the final model was confirmed through the akaike information criterion.The results indicate that other population factors had the most significant influence on both school types,and the explanatory deviation rates were 31.40%and 67.00%.For free-swimming schools,longitude and month were significant besides other population factors,and their interpretation deviation rates were 4.15%and 4.14%.Among the environmental factors,SST was the most important,with an explanatory deviation rate of 3.90%,followed by SSS with an explanatory deviation rate of 3.78%,and Chl.a had a lesser impact,with an explanatory deviation rate of only 1.40%.For associated schools,month and longitude were significant,and their interpretation deviation rates were 20.70%and 10.60%.Among the environmental factors,SSS was the most influential,with an explanatory deviation rate of 8.37%,while Chl.a and SST had lesser impacts,with explanatory deviation rates of 1.13%and 0.19%.It is concluded that the effects of other population factors should be considered in the future fishery forecasting models.With the aim of providing a reference for future research in the field of tuna purse-seine fisheries and for the scientific identification of fishing grounds.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7