检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:丁硕 DING Shuo(Tai'an Technician College,Tai'an 271000,China)
机构地区:[1]泰安技师学院,泰安271000
出 处:《价值工程》2025年第10期106-108,共3页Value Engineering
摘 要:针对化工机械电路故障定位难题,本文提出了一种基于卷积神经网络(CNN)的优化模型,通过改进网络结构与特征提取算法,提升故障诊断的准确性与效率。文章首先分析电路故障类型及其特征,探讨传统故障诊断方法的局限性,随后设计并优化CNN模型,包括数据预处理、网络结构设计与参数调优。实验验证表明,优化后的模型在故障诊断准确率与计算效率方面具有显著优势,并通过工程案例展示了其在实际应用中的可行性与效果。This paper proposes an optimization model based on Convolutional Neural Network(CNN)to address the problem of fault location in chemical machinery circuits.By improving the network structure and feature extraction algorithm,the accuracy and efficiency of fault diagnosis are enhanced.The article first analyzes the types and characteristics of circuit faults,explores the limitations of traditional fault diagnosis methods,and then designs and optimizes a CNN model,including data preprocessing,network structure design,and parameter tuning.Experimental verification shows that the optimized model has significant advantages in fault diagnosis accuracy and computational efficiency,and its feasibility and effectiveness in practical applications have been demonstrated through engineering cases.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.179