检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张玲[1] Zhang Ling(Minbei Vocational and Technical College,Nanping,Fujian 353000,CHN)
出 处:《模具制造》2025年第4期32-34,共3页Die & Mould Manufacture
摘 要:引入机器学习技术,通过海量历史数据训练智能诊断与预测模型,能够实现数控系统故障的早期发现、精准定位和趋势预测,减少意外停机时间,提高设备利用率。阐述了数控系统故障诊断与预测的重要意义,分析了机器学习在该领域的应用现状,提出了一种基于机器学习的数控系统故障诊断与预测方法,并对关键技术进行了详细论述,以期为提升数控系统运维水平、保障制造装备高效运行提供有益参考。Introducing machine learning technology and training intelligent diagnosis and prediction models through massive historical data can achieve early detection,accurate positioning,and trend prediction of CNC system faults,reduce unexpected downtime,and improve equipment utilization.This article elaborates on the significance of fault diagnosis and prediction in numerical control systems,analyzes the current application status of machine learning in this field,proposes a machine learning based method for fault diagnosis and prediction in numerical control systems,and discusses in detail the key technologies,in order to provide useful references for improving the operation and maintenance level of numerical control systems and ensuring the efficient operation of manufacturing equipment.
分 类 号:TG659[金属学及工艺—金属切削加工及机床]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.26