基于人工智能的光传输网络故障预测与诊断  

Fault Prediction and Diagnosis of Optical Transmission Network Based on Artificial Intelligence

在线阅读下载全文

作  者:刘元骏 LIU Yuanjun(China Telecom Jiangsu Operation and Maintenance Center,Nanjing 210017,China)

机构地区:[1]中国电信股份有限公司江苏操作维护中心,南京210017

出  处:《移动信息》2025年第3期27-29,共3页Mobile Information

摘  要:在全球数据流量呈爆炸式增长的背景下,光传输网络成为现代通信系统的神经中枢,负责大规模数据的传输工作。然而,网络的复杂多变导致了故障频发,这些故障不仅会降低网络性能,还可能造成服务中断,给用户带来极大的不便和经济损失。鉴于此,文中对基于人工智能的光传输网络故障预测与诊断进行了研究。首先,对光传输网络基础及人工智能技术进行了概述,然后通过数据收集与预处理、故障预测特征工程、故障预测模型构建、模型评估与优化4个方面详细探讨了人工智能在光传输网络故障预测中的应用。随后,对人工智能在故障诊断系统进行了设计。最后,通过某企业的实际案例展示了人工智能在故障预测及诊断中的有效性。Against the backdrop of explosive growth in global data traffic,optical transmission networks have become the nerve center of modern communication systems,responsible for the transmission of large-scale data.However,the complexity and variability of the network have led to frequent failures,which not only reduce network performance but may also cause service interruptions,causing great inconvenience and economic losses to users.In view of this,the paper conducted research on fault prediction and diagnosis of optical transmission networks based on artificial intelligence.Firstly,an overview of the foundation of optical transmission networks and artificial intelligence technology was provided.Then,the application of artificial intelligence in optical transmission network fault prediction was discussed in detail from four aspects:data collection and preprocessing,fault prediction feature engineering,fault prediction model construction,model evaluation and optimization.Subsequently,artificial intelligence was designed for the fault diagnosis system.Finally,the effectiveness of artificial intelligence in fault prediction and diagnosis was demonstrated through a practical case of a certain enterprise.

关 键 词:人工智能 光传输网络 故障预测 故障诊断 

分 类 号:TN929.5[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象