检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:袁月璨 郑熠 张烺 YUAN Yuecan;ZHENG Yi;ZHANG Lang(School of Computer Science,Chengdu University of Information Technology,Chengdu 610225,China)
机构地区:[1]成都信息工程大学计算机学院,四川成都610225
出 处:《软件导刊》2025年第4期108-114,共7页Software Guide
基 金:四川省科技计划资助项目(2024ZDZX0007)。
摘 要:在深度学习模型应用中,可解释性对于建立用户对模型的信任至关重要。视觉解释方法Score-CAM利用特征图扰动输入样本,并与特征重要性权重进行线性组合,表现出较高的准确率和跨模型的稳定性。然而,Score-CAM中的扰动样本需要反复调用模型而导致算法效率降低、响应缓慢。为了解决该问题,提出一种高效的基于扰动的视觉解释方法——FastScore-CAM,该算法在保持Score-CAM算法性能的同时可缓解运行效率低下的问题。进一步通过研究分析Score-CAM的基本工作原理,引入了非负矩阵分解(NMF)针对性地减少扰动样本并过滤冗余特征。实验结果表明,该方法不仅保持了较高的准确率和跨模型的稳定性能,还显著提高了原方法的运算速度。In the application of deep learning models,interpretability is crucial for establishing users'trust in the model.The visual explana‐tion method Score-CAM perturbs the input samples using feature maps and linearly combines them with feature importance weights,demon‐strating high accuracy and cross-model stability.However,the perturbed samples in Score-CAM require repeated calls to the model,resulting in reduced algorithm efficiency and slow response.To address this issue,an efficient perturbation-based visual explanation method,Fast‐Score-CAM,is proposed.This method alleviates the problem of low operational efficiency while maintaining the performance of the Score-CAM.Specifically,by studying and analyzing the basic working principle of the Score-CAM,Nonnegative Matrix Factorization(NMF)is in‐troduced to specifically reduce perturbed samples and filter redundant features.Experimental results show that this method not only maintains high accuracy and cross-model stable performance but also significantly improves the computational speed of the original method.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.26