机构地区:[1]中国计量大学计量测试与仪器学院,浙江杭州310018 [2]同济大学国家集成电路微纳检测设备产业计量测试中心(上海),上海200092 [3]同济大学精密光学工程技术研究所,上海200092 [4]同济大学先进微结构材料教育部重点实验室,上海200092 [5]同济大学数字光学前沿科学研究基地,上海200092 [6]同济大学全光谱高性能光学薄膜器件与应用专业技术服务平台,上海200092 [7]同济大学物理科学与工程学院,上海200092
出 处:《红外与激光工程》2025年第3期228-237,共10页Infrared and Laser Engineering
基 金:国家重点研发计划项目(2022YFF0607600,2022YFF0605502);国家自然科学基金项目(62075165);上海市科学技术委员会青年科技启明星项目(23QA1409400);上海市在线检测与控制技术重点实验室开放基金项目(ZX2020101)。
摘 要:光栅干涉仪作为一种精密位移测量手段,具备高精度、高分辨力以及强抗干扰能力等优势。光栅作为干涉仪的测量基准,其周期准确性与位移测量结果的精度直接相关。基于原子光刻沉积技术的原子光刻光栅周期直接溯源至铬原子跃迁频率,将其运用于光栅干涉仪的研制,使得测量结果可直接溯源,保障了测量结果的准确性和一致性。然而单次原子光刻制备的光栅面积较小,限制了干涉仪的测量量程。尽管采用拼接原子光刻技术可实现原子光刻光栅面积的延拓,且理论上不引入周期误差,但是拼接区域光栅峰谷高度存在不均匀性,将会影响光栅的衍射效率。文中基于严格耦合波分析理论对拼接原子光刻光栅的衍射特性进行了仿真分析,当光栅峰谷高度从30~85 nm改变时,TE偏振入射光对应衍射效率从0.3%升高至1.9%,TM偏振入射光对应衍射效率随着峰谷高度变化逐步升高,最大值可达36.8%。同步进行了光栅衍射性能的实验测试,结果表明实验测试结果与仿真理论结果的变化趋势一致。该研究为基于拼接原子光刻光栅的直接溯源型光栅干涉仪测量量程扩展提供了技术指导。Objective The grating is the core component of the grating interferometer,serving as the reference for displacement measurements.The accuracy of the grating period is a crucial factor influencing the measurement precision of the interferometer.Gratings fabricated using atomic lithography deposition technology can be traced directly to the transition frequency of chromium atoms,providing exceptional accuracy and consistency without the need for additional calibration.However,the limited area of gratings produced by atomic lithography necessitates the use of stitched atomic lithography techniques to expand the grating area for extending the measurement range of the interferometer.Nevertheless,stitched atomic lithography gratings exhibit non-uniform peak-to-valley heights,particularly in the overlapping regions of two depositions,where significant differences in peak-to-valley heights compared to single-deposition areas occur.This non-uniform variation in peak-to-valley height can affect the diffraction performance of the grating.To address this,a simulation model of the stitched atomic lithography grating was established to analyze the impact of peak-to-valley height on the grating’s diffraction performance.Concurrently,a testing setup for assessing the diffraction performance of the grating was constructed for experimental evaluation.Methods A simulation model of atomic lithography gratings with varying peak-to-valley heights was developed,as shown in(Fig.3).Based on Rigorous Coupled Wave Analysis(RCWA),diffraction efficiency variations in stitched gratings with different peak-to-valley heights were simulated under various incident light polarizations.Additionally,diffraction performance testing setups were separately constructed for gratings under TM and TE polarized light.By controlling the translation stage to move the grating,diffraction energy utilization efficiency variations across different grating regions were collected and recorded.Utilizing atomic force microscopy measurements of the peak-to-valley he
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...