检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:叶旖茵 韩巍 李济超[2,3] 马文静 韩泽鹏 宋新阳[1,2] YE Yiyin;HAN Wei;LI Jichao;MA Wenjing;HAN Zepeng;SONG Xinyang(University of Chinese Academy of Sciences,Beijing 100190,China;Institute of Engineering Thermophysics,Chinese Academy of Sciences,Beijing 100190,China;School of Energy,Power and Mechanical Engineering,North China Electric Power University,Beijing 102206,China)
机构地区:[1]中国科学院大学,北京100190 [2]中国科学院工程热物理研究所,北京100190 [3]华北电力大学能源动力与机械工程学院,北京102206
出 处:《动力工程学报》2025年第4期505-513,共9页Journal of Chinese Society of Power Engineering
基 金:国家自然科学基金资助项目(U22A6007)。
摘 要:燃气轮机变工况热力性能具有较强的非线性特点,基于物理模型的方法计算耗时长且计算误差较大,而基于数据驱动的方法对样本数据数量依赖强且计算过程中没有物理机理上的约束。为了克服这两种方法存在的问题,根据小型燃气轮机压缩和膨胀过程的物理机理,提炼出变工况运行的内外部影响参数与发电效率、排烟温度及排烟流量之间存在的约束关系,并结合神经网络基本框架,提出了基于机理修正的小型燃气轮机变工况神经网络模型(即改进模型)。具体算例的结果表明:利用已知的燃气轮机部件性能和部分数据样本,即可建立高精度的燃气轮机变工况神经网络模型;改进模型对关键参数的预测相对误差在0.941%以下,预测平均相对误差为0.583%,其预测平均相对误差为使用相同样本的基于纯数据驱动的神经网络预测误差的70.122%,为基于物理模型的方法计算误差的14.916%。The thermal performance of gas turbines under variable working conditions exhibits strong non-linear characteristics.Calculations based on physical models are time-consuming and have larger calculation errors,while data-driven methods depend heavily on the quantity of sample data and lack constraints from physical mechanisms during the calculation process.To overcome the shortcomings of both approaches,the constraints among the internal and external influencing parameters,power generation efficiency,exhaust temperature and exhaust flow rate under variable working conditions were extracted from the physical mechanism of the compression and expansion processes of small gas turbines.Combined with the basic framework of neural network,a neural network model for small gas turbines operated under variable working conditions was proposed based on mechanism modification.The results of specific calculations indicate that high-precision neural network model of gas turbines under variable working conditions can be established using known gas turbine component performance and some data samples.The relative error is less than 0.941%in the prediction of key parameters by the improved model.The average relative error of prediction is 0.583%,which is 70.122%of the prediction error of the purely data-driven neural network using the same samples,and 14.916%of the calculation error of the method based on the physical model.
分 类 号:TK47[动力工程及工程热物理—动力机械及工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7