基于可变障碍函数和强化学习的预设性能最优安全跟踪控制  

Optimal safety tracking control with prescribed performance based on variable barrier function and reinforcement learning

在线阅读下载全文

作  者:李小华[1] 刘莹 邹嵩楠 LI Xiao-hua;LIU Ying;ZOU Song-nan(School of Electronic and Information Engineering,University of Science and Technology Liaoning,Anshan 114051,China)

机构地区:[1]辽宁科技大学电子与信息工程学院,辽宁鞍山114051

出  处:《控制与决策》2025年第3期803-812,共10页Control and Decision

基  金:吉林大学汽车仿真与控制国家重点实验室开放基金项目(20210219);辽宁科技大学研究生科技创新项目(LKDYC202313).

摘  要:研究一类具有未知初始跟踪条件的非线性系统预设性能最优安全跟踪控制问题.首先,开发一个基于可变障碍函数的性能约束控制设计的新方法,并基于已有的安全边界保护法(SBPM)提出一个新的安全边界自调整规律(SBSAL),使其不仅可以处理实际输出约束发生突变的情况,而且还可以解决突变解除后系统输出不能快速准确跟踪原期望轨迹的问题,使得安全跟踪控制策略更为完善.然后,采用演员-评论家神经网络(ACNNs)强化学习(RL)算法优化系统的控制输入,减少控制的能量消耗.所设计预设性能最优安全跟踪控制器可保证系统在初始跟踪条件未知情况下的安全跟踪控制,且系统输出具有预设有限时间控制性能.最后,通过仿真验证所提出方法的有效性.The optimal safety tracking control problem with prescribed performance is investigated for a class of nonlinear systems with unknown initial tracking condition.A new method for performance constraint control design is developed based on a variable barrier function.Based on the existing secure boundary protection method(SBPM),a novel secure boundary self-adjustment law(SBSAL)is proposed.It can not only handle the situations that the actual output constraints suddenly change,but also solve the problem that the system output is not able to quickly and accurately track the original expected trajectory after the mutation is relieved,so that the safety tracking control strategy is more consummate.Meanwhile,the reinforcement learning(RL)optimal method based on actor-critic neural networks(ACNNs)is adopted to optimize the control input of the system,and reduce the energy consumption for control.The designed optimal safety tracking controller with prescribed performance constraint can ensure the safe tracking control of the system with unknown initial tracking condition,and the output of the system has prescribed finite-time control performance.Finally,the effectiveness of the proposed method is verified by simulations.

关 键 词:最优跟踪控制 强化学习 安全跟踪 预设性能控制 可变障碍函数 输出约束 

分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象