机构地区:[1]秦皇岛市第二医院影像科,秦皇岛066000 [2]秦皇岛市第一医院影像科,秦皇岛066000 [3]大连大学附属中山医院PET/CT医学中心,大连116001 [4]大连大学附属中山医院影像科,大连116001 [5]大连大学附属新华医院影像科/大连市功能分子影像重点实验室,大连116001
出 处:《中华解剖与临床杂志》2025年第3期154-162,共9页Chinese Journal of Anatomy and Clinics
基 金:国家自然科学基金项目(82071911);辽宁省重点研发计划(2022JH2/101300021);秦皇岛市科技项目(202301A279)。
摘 要:目的探讨多参数MRI影像组学联合临床病理特征的融合模型对较低级别脑胶质瘤(LGGs)患者生存预后的术前预测价值。方法回顾性队列研究。纳入癌症基因图谱公共数据库中1991年1月—2001年5月105例WHO肿瘤分级为Ⅱ~Ⅲ级的LGGs患者为训练集,其中男53例、女52例,年龄42(33,57)岁。纳入2017年1月—2021年11月秦皇岛市第二医院52例LGGs患者为外部验证集,其中男26例、女26例,年龄42(31,54)岁。记录所有患者临床病理特征(性别、年龄、肿瘤分级、IDH基因1p/19q状态、生存状态及生存时间)和MRI影像资料。对每例患者的T1加权像(WI)、T2WI、T2液体衰减反转恢复序列及增强T1WI图像进行特征提取,在训练集中采用组内相关系数、方差阈值法、Spearman相关分析、单因素Cox回归分析、最小绝对收缩与选择算子算法(LASSO)、LASSO-Cox回归分析进行图像特征筛选,构建影像组学风险评分(RRS)模型。根据训练集患者生存时间采用X-tile软件确定RRS模型预测3年累积生存率的最佳临界值,将LGGs患者分为高风险组和低风险组,采用Kaplan-Meier曲线评估训练集中高、低风险组患者生存率的差异,并在验证集中进行验证。在训练集中对高风险组和低风险组LGGs患者年龄、性别、异柠檬酸脱氢酶(IDH)基因1p/19q突变状态及肿瘤分级等临床病理特征行单因素、多因素Cox回归分析,选出影响LGGs生存预后的独立危险因素,联合影像组学特征构建预测LGGs患者术后3年累积生存率的融合模型。在训练集中采用时间依赖受试者操作特征曲线(ROC曲线)评估RRS模型和融合模型对LGGs患者3年累积生存率的预测效能,采用Delong检验比较不同模型的预测效能,通过校正曲线评估融合模型的校正效能,并在验证集中进行验证。结果训练集与验证集患者的性别、年龄、肿瘤分级、IDH基因1p19q状态比较,差异均无统计学意义(P值均>0.05)。MRI图像经�Objective This study aimed to explore the value of the fusion model of multiparameter MRI combined with clinicopathological features in predicting the survival and prognosis of lower-grade gliomas(LGGs).Methods A retrospective cohort study was conducted.The training set included 105 LGG patients with tumor gradeⅡ-Ⅲ(53 males,52 females,age 42[33,57]years)from the Cancer Genome Atlas public database,with diagnoses made between January 1991 and May 2001.The external validation set included 52 LGG patients(26 males,26 females,age 42[31,54]years)from Qinhuangdao Second Hospital,recruited between January 2017 and November 2021.Clinical and pathological data(gender,age,tumor grade,IDH gene 1p/19q status,survival status,and survival time)and MRI imaging data were recorded for all patients.Features were extracted from each patient's T1 weighted images(WI),T2WI,T2 fluid-attenuated inversion recovery,and contrast-enhanced T1WI images.In the training set,image feature selection was performed using intra-class correlation coefficient,variance threshold method,Spearman correlation analysis,univariate Cox regression,least absolute shrinkage and selection operator(LASSO),and LASSO-Cox regression analysis to build a radiomics risk score(RRS)model.The optimal cutoff value of the RRS model for predicting the three-year cumulative survival rate was determined using X-tile software on the basis of the survival time of the training set patients,categorizing LGG patients into high-risk and low-risk groups.Kaplan-Meier curves were used to assess the difference in survival between the highand low-risk groups in the training set and were validated in the validation set.In the training set,univariate and multivariate Cox regression analyses of clinical-pathological features,including age,gender,IDH gene mutation status,and tumor grade,were conducted to identify independent prognostic factors for LGG survival.A fusion model was then developed by integrating radiomics features with clinical-pathological data to predict the three-year cum
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...