检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:付辉 孙勇 邹国栋[2] 张帆 杨许生 张涛[1] 彭秋明[2] FU Hui;SUN Yong;ZOU Guodong;ZHANG Fan;YANG Xusheng;ZHANG Tao;PENG Qiuming(School of Physics and Materials Science,Guangzhou University,Guangzhou 510006,China;State Key Laboratory of Metastable Materials Science and Technology,Yanshan University,Qinhuangdao 066004,China;Department of Industrial and Systems Engineering,The Hong Kong Polytechnic University,Hong Kong 999077,China)
机构地区:[1]广州大学物理与材料科学学院,广州510006 [2]燕山大学亚稳材料制备与技术国家重点实验室,秦皇岛066004 [3]香港理工大学工业及系统工程学系,中国香港999077
出 处:《金属学报》2025年第3期475-487,共13页Acta Metallurgica Sinica
基 金:教育部长江学者教授计划项目No.T2020124;国家自然科学基金项目Nos.52371104、52171126、52202374和52331003;广东省基础与应用基础研究基金项目No.2024A1515013052;广州市基础与应用基础研究专题项目No.2024A04J4289;香港理工大学项目No.1-YXB4。
摘 要:镁合金作为最轻的金属结构材料,在减重领域具有广阔的应用前景。但镁合金的强度偏低、塑性较差、耐腐蚀性能不佳,这些缺点限制了镁合金的广泛应用。超高压处理技术能够使镁合金获得在常压条件下无法制备的微观结构和新相,压力和温度的结合为调控镁合金的微观结构提供了巨大潜力,为打破镁合金综合性能之间的瓶颈提供了新途径。本工作聚焦于高性能镁合金超高压研究进展,概述了超高压处理制备工艺和技术特点;重点阐述了超高压处理调控对镁合金的微观结构、力学性能、耐腐蚀性能和储氢性能的影响;最后展望了未来镁合金超高压处理研究的发展方向。Magnesium alloys are the lightest metallic structural materials.The density of magnesium alloys is~1.7 g/cm^(3),which is~2/3 of the aluminum alloy,~2/5 of titanium alloys,and~1/4 of steel.Magnesium alloys possess high specific strength,excellent casting performance,excellent biocompatibility,good electromagnetic shielding performance,remarkable damping performance,and ease of recovery.They have broad application potential in aerospace,defense,automobile transportation,biomedical,electronic 3C,construction,and energy fields.China has substantial Mg resources.The development of low-cost and high-performance magnesium alloys in the lightweight field can transform resource advantages into industrial benefits while promoting energy conservation and emission reduction in production and daily life.This is strategically significant for the enhancement of the country's technology industry and the achievement of the objectives of"carbon peak and carbon neutrality".However,commercial magnesium alloys currently possess relatively low strength,poor ductility,and corrosion resistance compared with common metallic structural materials like steel and aluminum alloys,significantly hindering the large-scale industrial application of magnesium alloys as structural materials.Many methods exist to enhance the comprehensive mechanical properties of magnesium alloys.Conventionally,the microstructure of magnesium alloys can be modified by adding alloying elements,plastic deformation,and heat treatment.The strength of magnesium alloys can be improved through grain refinement,work hardening,solid solution strengthening,and precipitation strengthening.Nevertheless,magnesium alloys prepared through these traditional methods can achieve excellent strength but at the expense of ductility,leading to the strengthductility tradeoff in the magnesium alloy.At present,ultrahigh-pressure(UHP)treatment technology can achieve novel phases and modified microstructures that cannot be prepared under atmospheric pressure.The pressure significantly impacts
分 类 号:TG146.2[一般工业技术—材料科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171