检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈逸菲 王龙超 王德超 李永洁 唐小利[1] CHEN Yifei;WANG Longchao;WANG Dechao;LI Yongjie;TANG Xiaoli(Institute of Medical Information/Library,Chinese Academy of Medical Sciences&Peking Union Medical College,Beijing 100005,China)
机构地区:[1]中国医学科学院/北京协和医学院医学信息研究所/图书馆,北京100005
出 处:《医学信息学杂志》2025年第3期29-35,共7页Journal of Medical Informatics
基 金:中国医学科学院医学与健康科技创新工程项目(项目编号:2021-I2M-1-033)。
摘 要:目的/意义提出一种基于动态图神经网络的技术机会发现方法,为动脉粥样硬化相关技术创新提供智能决策支持。方法/过程从incoPat获取2004—2024年动脉粥样硬化领域专利数据,提取技术要素,构建包含技术要素的动态技术语义网络,提出动态图神经网络模型DynGNN-TOD,采用滑动时间窗对动脉粥样硬化相关专利数据进行划分,并通过对比实验验证模型性能。结果/结论 DynGNN-TOD模型的AUC-ROC达0.932,Accuracy@10为62.3%,相较于其他3种基线模型均有不同程度的提升,能够为技术机会发现提供可靠的预测支持。Purpose/Significance To propose a method of technical opportunity discovery based on dynamic graph neural network,so as to provide intelligent decision support for the innovation of atheromatosis-related technologies.Method/Process The patent data in the field of atherosclerosis from 2004 to 2024 are obtained from incoPat,the technical elements are extracted,and a dynamic technical semantic network containing the technical elements is constructed.A dynamic graph neural network model named DynGNN-TOD is proposed,and the atherosclerotic patent data are divided by sliding time window.The performance of the model is verified by comparative experiments.Result/Conclusion Experimental results show that the AUC ROC of DynGNN-TOD is 0.932 and Accuracy@10 is 62.3%,which are improved in different degrees compared with the other 3 baseline models,and can provide reliable prediction support for technical opportunity discovery.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7