从工艺废气到清洁能源:半导体行业氢资源再生驱动能源结构转型  

From Process Waste Gas to Clean Energy:Hydrogen Resource Regeneration Drives Energy Structure Transformation in Semiconductor Industry

在线阅读下载全文

作  者:肖扬新 涂宇航 骆元婕 姜琳 张建华[1] XIAO Yangxin;TU Yuhang;LUO Yuanjie;JIANG Lin;ZHANG Jianhua(School of Microelectronics,Shanghai University,Shanghai 201800,China)

机构地区:[1]上海大学微电子学院,上海201800

出  处:《西安工业大学学报》2025年第2期301-322,共22页Journal of Xi’an Technological University

基  金:国家自然科学基金面上项目(52371229)。

摘  要:在全球能源低碳转型背景下,氢能作为关键清洁能源载体,与半导体制造业的协同发展备受关注。中国半导体产业在先进制程与第三代材料领域的突破,大幅提升了对超高纯氢气的需求,2023年全球半导体用氢市场规模达1.42亿美元,预计2030年将突破2.47亿美元。然而,半导体制造中产生的含氢废气回收率仅20%,80%通过燃烧或直排,不仅导致资源浪费(年损失数百万吨氢气),还产生大量CO_(2)(每吨氢气燃烧排放9吨)。在EUV光刻等工艺中,氢气需求激增(达传统工艺千倍),但废气成分复杂(含硅烷、酸性气体等),传统燃烧法效率低且与碳中和目标冲突。为应对挑战,电化学压缩(EHC)、变压吸附(PSA)等新技术崭露头角。EHC技术可提纯低浓度废气至99.999%以上,能耗降低2/3,且安全性高。然而,规模化应用仍面临杂质导致催化剂中毒、氢气纯度要求严苛(99.9999%以上)、技术成本高昂及产业链协同不足等瓶颈。国际政策如IEA净零路线图与欧盟氢能法案均强调工业副产氢回收的重要性,中国亦将氢能技术列为发展重点。本文系统分析半导体含氢废气回收技术与氢能产业链的互促关系,涵盖氢气储运、燃料电池等跨领域应用,提出通过技术创新与标准协同,推动半导体行业绿色转型,并为氢能规模化提供新路径,助力全球碳中和目标。未来需突破杂质处理、成本控制及产业链整合难题,以实现资源循环与低碳发展的双重效益。In the context of global low-carbon energy transformation,hydrogen energy,as a key clean energy carrier,has attracted much attention for its coordinated development with the semiconductor manufacturing industry.Breakthroughs in advanced manufacturing processes and third-generation materials in China’s semiconductor industry have greatly increased the demand for ultra-high-purity hydrogen.The global semiconductor hydrogen market size has reached US$142 million in 2023,and is expected to exceed US$247 million in 2030.However,the recovery rate of hydrogen-containing waste gas produced in semiconductor manufacturing is only 20%,and 80%is combusted or discharged directly,which not only leads to waste of resources(losing millions of tons of hydrogen annually),but also produces a large amount of CO_(2)(9 tons emitted by one ton of hydrogen combusted).In EUV lithography and other processes,the demand for hydrogen has surged(reaching thousands of times that of traditional processes),but the exhaust gas composition is complex(including silane,acid gas,etc.),and the traditional combustion methods have low efficiency and conflict with the goal of carbon neutrality.In response to the challenges,new technologies such as electrochemical compression(EHC)and pressure swing adsorption(PSA)have emerged.EHC technology can purify low-concentration exhaust gas to more than 99.999%,reduce energy consumption by 2/3,and have high safety.However,large-scale applications still face bottlenecks such as catalyst poisoning caused by impurities,strict hydrogen purity requirements(above 99.9999%),high technical costs,and insufficient industrial chain coordination.International policies such as the IEA Net Zero Roadmap and the EU Hydrogen Energy Act all emphasize the importance of industrial by-product hydrogen recycling,and China has also listed hydrogen energy technology as a development priority.This paper systematically analyzes the mutually reinforcing relationship between semiconductor hydrogen-containing waste gas recovery technology an

关 键 词:半导体制造 氢资源再生 电化学氢气压缩 氢能产业链 碳中和 

分 类 号:TK91[动力工程及工程热物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象