检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:谭文慧 曹晓明[1] TAN Wenhui;CAO Xiaoming(Department of Urology,the First Hospital of Shanxi Medical University,Taiyuan,Shanxi 030000,China)
机构地区:[1]山西医科大学第一医院泌尿外科,山西太原030000
出 处:《安徽医药》2025年第5期977-982,共6页Anhui Medical and Pharmaceutical Journal
基 金:山西省卫生健康委科研课题(2020087)。
摘 要:目的开发基于多参数核磁(mpMRI)及生化和临床参数的前列腺癌(PCa)预测模型,并评估预测模型的效能,为前列腺特异性抗原(PSA)灰区病人提供有意义的临床策略,以避免不必要的活检。方法回顾性分析2019年1月至2022年9月在山西医科大学第一医院进行过前列腺穿刺活检,并且PSA为4~10μg/L的128例病人的临床数据,采用7∶3随机分为训练集和测试集,进行单变量分析和多变量分析,确定PCa的预测因子。使用logistic回归建立预测模型,并绘制列线图。使用受试者操作特征曲线(ROC曲线)下面积,评价模型的诊断效能,通过约登指数判断模型的最佳截断值。结果年龄、前列腺特异性抗原密度(PSAD)、PI-RADS v2.1评分为预测因子构建模型,并绘制列线图。ROC曲线下面积表示模型的预测能力,诊断模型的AUC值为0.87,95%CI:(0.78,0.93),训练集最佳截断值的灵敏度和特异度分别为0.85和0.79。测试集中,模型的灵敏度、特异度、阳性预测值、阴性预测值、AUC值分别为88.89%、75.86%、53.33%、95.65%、0.89。当风险阈值为29%时,76%的病人可以避免不必要的活检。结论该研究联合年龄、PSAD和PI-RADS v2.1评分建立了PSA灰区PCa的预测模型,该预测模型具有良好的诊断性能,可显著减少不必要的PSA灰区穿刺活检。Objective To develop a prostate cancer(PCa)prediction model based on multi-parameter nuclear magnetic resonance(mpMRI)and biochemical and clinical parameters,and to evaluate the effectiveness of the prediction model,so as to provide meaningful clinical strategies for patients with prostate specific antigen(PSA)gray area to avoid unnecessary biopsy.Methods The clinical data of 128 patients with PSA 4-10μg/L in the First Hospital of Shanxi Medical University from January 2019 to September 2022 were analyzed retrospectively.The patients were 7:3 randomly assgned into training set and test set.Univariate analysis and multivariate analysis were used to determine the predictors of PCa.Logistic regression was used to establish the prediction model and draw the line chart.The area under the subject working characteristic(ROC)curve was used to evaluate the diagnostic efficiency of the model,and the best cut-off value of the model was judged by the Jordan index.Results Age,prostate specific antigen density(PSAD)and PIRADS v2.1 score were used as predictive factors to build a model and draw a line chart.The area under the ROC curve represented the predictive ability of the model,the AUC value of the diagnostic model was 0.87,95%CI:(0.78,0.93),and the sensitivity and specificity of the best truncation value of the training set were 0.85 and 0.79,respectively.In the test set,the sensitivity,specificity,positive predictive value,negative predictive value and AUC value of the model were 88.89%,75.86%,53.33%,95.65%and 0.89,respectively.When the risk threshold was 29%,76%of patients could avoid unnecessary biopsies.Conclusions The study combine with age,PSAD and PI-RADSv2.1 score to establish a predictive model of PSA gray area prostate cancer.The predictive model has good diagnostic performance and can significantly reduce unnecessary PSA gray area biopsy.
关 键 词:前列腺肿瘤 多参数核磁 前列腺特异性抗原密度 前列腺成像报告和数据系统 前列腺活检
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.248