检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周俊昌 曾维[1,2] 彭鹏 庞记成 刘军军 杨熙临 Zhou Junchang;Zeng Wei;Peng Peng;Pang Jicheng;Liu Junjun;Yang Xilin(College of Computer Science and Cyber Security,Chengdu University of Technology,Chengdu,610059,China;Sichuan Engineering Technology Research Center of Industrial Internet Intelligent Monitoring and Application,Chengdu,610059,China)
机构地区:[1]成都理工大学计算机与网络安全学院,成都市610059 [2]四川省工业互联网智能监测及应用工程技术研究中心,成都市610059
出 处:《中国农机化学报》2025年第4期126-132,共7页Journal of Chinese Agricultural Mechanization
基 金:四川省科技计划项目(2023YFN0053)。
摘 要:随着农业智能化水平不断提升,苹果叶片病害自动化检测十分必要,而现有的自动化检测模型由于网络结构复杂,难以在移动端进行部署。基于此,构建一种YOLOv5—SCFG轻量模型。首先,引入轻量型网络ShuffleNetv2重新构建YOLOv5骨干网络,保证网络整体轻量化;然后,在颈部网络引入CARAFE上采样算子和FasterNet模块,增强特征提取能力,加快特征融合速度;最后,添加全局注意力机制GAM,弥补网络轻量化带来的精度损失。结果表明,YOLOv5—SCFG模型权重大小为6.2 MB,平均精度均值mAP为85.9%,计算量FLOPs为6.3 G。相比于YOLOv5s,模型权重大小减少57%,mAP下降0.2%,FLOPs减小61%。With the continuous improvement of agricultural intelligence level,the automatic detection method of apple leaf disease becomes important and necessary,but the existing automatic detection algorithm model is often difficult to deploy on the mobile terminal due to the complex network structure,a lightweight model of YOLOv5—SCFG is proposed in this paper.Firstly,the lightweight ShuffleNetv2 network is introduced to rebuild the YOLOv5 backbone network,so as to ensure the overall lightweight network.Additionally,the CARAFE up-sampling operator and FasterNet module are introduced into the neck network,so as to enhance feature extraction capabilities and speed up feature fusion.Finally,the global attention mechanism(GAM)is introduced to compensate for the loss of precision caused by network lightweighting.The experimental results show that the weight size of YOLOv5—SCFG model is 6.2 MB,mAP is 85.9%,and FLOPs is 6.3 G.Compared with YOLOv5s,the weight size of YOLOV5-SCFG model is reduced by 57%,mAP is decreased by 0.2%,and FLOPs is decreased by 61%.
分 类 号:S436.611[农业科学—农业昆虫与害虫防治] TP391.4[农业科学—植物保护]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49