检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李瑞华 Ruihua Li(Business School,University of Shanghai for Science and Technology,Shanghai)
机构地区:[1]上海理工大学管理学院,上海
出 处:《建模与仿真》2025年第2期417-424,共8页Modeling and Simulation
摘 要:RatSLAM是一个受海马体启发的同时定位与地图构建(SLAM)解决方案。针对RatSLAM由于一般的视觉处理方法而在复杂的室内环境中表现不佳的情况。本文首先提出了一种改进的RatSLAM,这是一种基于特征的单目SLAM系统,可以实时运行。其次,本文引入了多索引哈希(MIH)算法和三块区域代码(LATCH)的学习排列,用于评估当前场景与先前场景的相似性。最后,通过贝叶斯滤波和滑动窗口筛选出最相似的视觉模板,完成回环检测(LCD)。实验结果表明,改进后的系统在室内环境中的位置识别精度更高,体验地图的构建性能也更好,最大召回率达到60%。RatSLAM is a simultaneous localization and mapping(SLAM)solution inspired by the hippocampus.Regarding the poor performance of RatSLAM in complex indoor environments due to general visual processing methods.This article first proposes an improved RatSLAM,which is a feature-based monocular SLAM system that can run in real-time.Secondly,this article introduces the Multi Index Hash(MIH)algorithm and the Learning Arrangement of Three Block Region Code(LATCH)to evaluate the similarity between the current scene and the previous scene.Finally,the most similar visual template is selected through Bayesian filtering and sliding window filtering to complete loop closure detection(LCD).The experimental results show that the improved system has higher position recognition accuracy in indoor environments,better performance in constructing experiential maps,and a maximum recall rate of 60%.
关 键 词:回环检测 同时定位与建图 多索引哈希 LATCH
分 类 号:TP242[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.63