检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:荆宇航[1] 王朝阳 蔺永康 杨志强[1] 方国东 赵锐 李景彤 JING Yuhang;Wang Zhaoyang;LIN Yongkang;YANG Zhiqiang;FANG Guodong;ZHAO Rui;LI Jingtong(School of Astronautics,Harbin Institute of Technology,Harbin 150001,China)
出 处:《力学与实践》2025年第2期285-294,共10页Mechanics in Engineering
基 金:黑龙江省高等教育教学改革研究项目(SJGY20220009);哈尔滨工业大学第十一批研究生课程思政教育教学改革项目(XYSZ2023001)资助。
摘 要:采用机器学习结合计算力学分析了带孔薄板的应力问题,其中数据驱动神经网络依赖于输入数据,通过学习数据中的模式来进行预测。物理信息神经网络通过嵌入平衡方程,提高了准确性和泛化能力。深度能量法根据最小势能原理构造损失函数,计算效率和准确性明显更优,给出了其在双向均匀拉伸和非均匀拉伸下的Von Mises应力和误差云图,误差不超过5%。与机器学习的交叉有力地促进了计算力学研究范式的创新,并不断拓展其深度和应用范围。This paper analyzes the stress problem of a thin plate with holes using machine learning combined with computational mechanics,in which data-driven neural networks rely on input data and make predictions by learning patterns in the data.Physically informed neural network improves the accuracy and generalization ability by embedding the equilibrium equations.The deep energy method constructs the loss function based on the principle of minimum potential energy,which has significantly better computational efficiency and accuracy,and gives its Von Mises stress and error cloud maps under bi-directional uniform and non-uniform stretching with an error of no more than 5%.The intersection with machine learning strongly contributes to the innovation of computational mechanics research paradigm and continues to expand its depth and application scope.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171