时变量测方差下多传感器风险控制算法  

Multi-sensor Risk Control Algorithm Under Time-varying Variance

在线阅读下载全文

作  者:付建涛 左燕[1] 周佳 彭冬亮[1] FU Jiantao;ZUO Yan;ZHOU Jia;PENG Dongliang(School of Automation,Hangzhou Dianzi University,Hangzhou 310018,China)

机构地区:[1]杭州电子科技大学自动化学院,浙江杭州310018

出  处:《无线电工程》2025年第4期877-882,共6页Radio Engineering

基  金:国家自然科学基金(61673146);浙江省自然科学基金重点项目(LZ23F030002)。

摘  要:在多传感器多目标协同跟踪过程中,雷达量测噪声方差随距离变化,距离相关噪声特性使得目标跟踪误差增加。雷达辐射风险和目标威胁风险将导致跟踪精度和传感器安全性下降。对此,在时变量测方差下构造了广义目标跟踪代价,综合考虑雷达辐射截获概率和目标威胁风险,建立时变量测方差下多传感器联合风险控制模型,提出了改进匈牙利法优化求解,通过最小化综合风险合理控制传感器跟踪目标。仿真显示,所提算法在满足对目标跟踪精度要求的同时降低了联合风险。In the multi-sensor multi-target collaborative tracking system,the radar measurements noise variance varies with the target distances,which will increase the target tracking errors.In addition,the sensor radiation risk and target threat risk will lead to the degradation of tracking accuracy and sensor security.To deal with the problem,a generalized target tracking cost is constructed under the time-variying variance.The sensor emission interception risk and the target threat risk are considered synthetically to construct the sensor control model based on joint risks.Then the improved Hungary algorithm is used to obtain the optimized sensor allocation by minimizing risk.The simulation results show that the algorithm can meet the requirements of target tracking accuracy while reducing the joint risk.

关 键 词:目标跟踪 传感器控制 联合风险 改进匈牙利法 

分 类 号:TN958.97[电子电信—信号与信息处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象